
Comparison of Symbolic Maximal End
Component Decomposition Algorithms

by
Felix Faber

(394522)

Bachelor Thesis at RWTH Aachen University,
Lehrstuhl für Informatik 2

Submitted to: Fakultät für Mathematik, Informatik und
Naturwissenschaften der RWTH Aachen

Submission Date: September 7, 2023

First examiner: Prof. Dr. Ir. Dr. h.c. Joost-Pieter Katoen
Second examiner: apl. Prof. Dr. Thomas Noll
Thesis advisor: Tim Quatmann, M. Sc.

Zentrales Prüfungsamt/Central Examination Office

Eidesstattliche Versicherung
Declaration of Academic Integrity

___________________________ _____________________________

Name, Vorname/Last Name, First Name Matrikelnummer (freiwillige Angabe)
 Student ID Number (optional)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/

Masterarbeit* mit dem Titel
I hereby declare under penalty of perjury that I have completed the present paper/bachelor's thesis/master's thesis* entitled

__

__

__

selbstständig und ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting)

erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt.

Für den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich,

dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in

gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
independently and without unauthorized assistance from third parties (in particular academic ghostwriting). I have not used any

other sources or aids than those indicated. In case that the thesis is additionally submitted in an electronic format, I declare that

the written and electronic versions are fully identical. I have not previously submitted this work, either in the same or a similar

form to an examination body.

______________________ ____________________________________

Ort, Datum/City, Date Unterschrift/Signature

*Nichtzutreffendes bitte streichen/Please delete as appropriate

Belehrung:
Official Notification:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung

falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei

Jahren oder mit Geldstrafe bestraft.

§ 156 StGB (German Criminal Code): False Unsworn Declarations

Whosoever before a public authority competent to administer unsworn declarations (including Declarations of Academic

Integrity) falsely submits such a declaration or falsely testifies while referring to such a declaration shall be liable to

imprisonment for a term not exceeding three years or to a fine.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so

tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158

Abs. 2 und 3 gelten entsprechend.

§ 161 StGB (German Criminal Code): False Unsworn Declarations Due to Negligence

(1) If an individual commits one of the offenses listed in §§ 154 to 156 due to negligence, they are liable to imprisonment for a
term not exceeding three years or to a fine.
(2) The offender shall be exempt from liability if they correct their false testimony in time. The provisions of § 158 (2) and (3)
shall apply accordingly.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:
I have read and understood the above official notification:

______________________ ____________________________________

Ort, Datum/City, Date Unterschrift/Signature

Abstract

The computation of maximal end components (MECs) is extensively used to model
check Büchi and Streett objectives on Markov decision processes (MDPs). As the
systems which are modelled by MDPs become increasingly large, symbolic algorithms
are often employed in which vertices and edges are processed in sets using symbolic
operations. Three symbolic MEC decomposition algorithms have been proposed in
the literature. Given an MDP containing n vertices and m edges, these algorithms
require O(n2), O(n ·

√
m) and O(n2−ε · log(n)) symbolic operations respectively (with

0 < ε ≤ 0.5).
In this thesis, we implement and compare the proposed algorithms empirically using

a variety of real world benchmark MDPs from the quantitive verification benchmark
set (QVBS). The results show that the O(n2) MEC decomposition often has the fastest
runtime and the lowest amount of symbolic operations, while only the O(n2−ε · log(n))
algorithm is competitive in runtime, but loses its applicability on MDPs using an edge-
based actions implementation. While the traversal of the MDP is usually done on a
graph-like structure, one can choose whether to encode its actions into the transitions
or as distinct vertices of the structure. This thesis also provides and implements a
symbolic algorithm to convert from an edge-based action to a vertex-based action
representation.

Contents

1 Introduction 1
1.1 Contributions of the Thesis . 2
1.2 Related Work . 3
1.3 Structure of the Thesis . 4

2 Preliminaries 5
2.1 Strongly Connected Components . 5
2.2 Separators . 6
2.3 Markov Decision Process . 6
2.4 Policies and Properties . 7
2.5 Graph-Like Structures of MDPs . 8
2.6 Maximal End Components . 10
2.7 Random Attractors . 12

3 Binary Decision Diagrams 13
3.1 Notation . 13
3.2 Naive BDDs and Reduced Ordered BDDs 13
3.3 And Operation on ROBDDs . 15
3.4 List of BDD operations . 18

4 MDP Representation 19
4.1 Sparse Representation . 19
4.2 Symbolic Representation . 20

5 Symbolic Algorithms 23
5.1 GEBA Conversion . 23
5.2 SCC Decomposition . 26
5.3 Random Attractor . 27
5.4 Random Out . 29
5.5 MEC Decomposition . 29

5.5.1 Algorithm Naive . 29
5.5.2 Algorithm LockStep . 32

5.5.3 Algorithm Collapsing . 35

6 Evaluation 41
6.1 Setup . 41
6.2 MDP Conversion . 43
6.3 MEC Decomposition Algorithms . 45
6.4 GEBA vs GVBA . 51

7 Conclusion and Outlook 55

Bibliography 57

Chapter 1

Introduction

The field of model checking aims to automatically prove properties of complex sys-
tems [BK08]. A guarantee of certain properties, e.g. the (un)reachability of certain
states, can ensure the correctness of a system and is thus crucial for systems which
cannot afford failure. The model to check is usually represented using a transition
system.

One popular way to model a system containing uncertainty is to construct a Markov
decision process (MDP), which is made up of states and governable actions but with
uncertain outcomes in conjunction with rewards [Put94]. Here, model checking can help
the user reason about the actions to take at any given state, but also e.g. inform them
about the probabilities of certain outcomes. This results in MDPs being used in a wide
variety of application areas to model real-world systems such as maintenance, finance
or communication systems [Whi85, Whi88, Whi93, BVD17]. Long-term rewards are
especially interesting for systems running in a loop, whose verification usually requires
decomposing the system’s MDP into its maximal end components (MECs) [CH14,
CDHL16]. Büchi objectives check whether a set of states can be visited infinitely often,
while Streett objectives work with infinite paths of a transition system. An MEC, which
consists of states and actions, describes actions which can be used to loop infinitely
on the states of the MEC. Therefore an MEC decomposition is often computed as a
preprocessing step when model checking Büchi or Streett objectives [CH14, CDHS19].

Due to the inherent statefulness of most complex systems, the amount of states which
need to be checked quickly explodes and becomes difficult to manage. Even with
the ongoing advancements in computational power, explicit algorithms, in which each
state is processed individually, become infeasible when working with systems consist-
ing of billions or trillions of states. Symbolic model checking combats this problem
by exclusively working with sets of states represented by Binary Decision Diagrams
(BDDs) [Lee59, Ake78, Bry86, Bry92].

1

2 Chapter 1. Introduction

While this approach enables model checking on large systems, it also requires the usage
of symbolic algorithms in order to function efficiently [EFT93, DB13, XB00]. Natu-
rally, an improvement to symbolic MEC decomposition algorithms is always desired
in order to verify some properties of a complex system more efficiently. Three sym-
bolic MEC decomposition algorithms have been proposed in the literature. Naive
is the symbolic implementation of a basic MEC decomposition algorithm described
in [DA98]. LockStep extends Naive by using a symbolic lockstep search on the
transition system [CHL+18]. Collapsing [CDHS21], whose first implementation is
provided by this thesis, focuses on the quicker detection of end components (ECs),
from which all MECs can be computed. These symbolic algorithms, in the worst-case,
require O(n2), O(n ·

√
m) and O(n2−ε · log(n)) symbolic operations respectively (with

0 < ε ≤ 0.5) [CHL+18, CDHS21]. But as neither theoretical improvements nor disad-
vantages always translate directly into measurable practical impacts, any theoretical
advancements should be experimentally evaluated such that real-world problems can
be pragmatically solved to the best of our abilities [EFT93, BW96, LSS+23].

1.1 Contributions of the Thesis

The main contribution of this thesis is the experimental evaluation of three exist-
ing symbolic MEC decomposition algorithms Naive, LockStep and Collapsing
[CHL+18, CDHS21] by implementing them into the model checker Storm [HJK+21].
Using the quantitative verification benchmark set (QVBS) [HKP+19], both the run-
time and the amount of symbolic Pre/Post operations are compared empirically. The
authors of the recent symbolic MEC decomposition algorithms assume a graph-like
structure in which the actions of a given MDP are encoded into vertices distinct from
states. In contrast, the model checkers Storm and Prism [HJK+21, KNP02] as well
as e.g. the Jani model specification [BDH+17] usually encode an MDP’s actions into
the edges of the transition system. We demonstrate that one of the symbolic MEC
decomposition algorithms is not applicable to the edge-based actions representation
without significantly adjusting the algorithm. We believe this thesis presents the first
implementation of Collapsing, as well as the first implementation of LockStep for
an edge-based action representation.

This thesis also formalizes the differences of these two MDP representations. We
present and implement a (to the best of our knowledge) novel symbolic algorithm to
convert from the edge-based to the vertex-based actions representation into Storm.
While the runtime cost of the conversion process itself is cheap, the conversion is not
optimal as it significantly increases the transition BDD size, which leads to slower
symbolic operations and thus a slower symbolic MEC decomposition overall. Using
this conversion, the symbolic MEC decomposition algorithms are compared for both
MDP representations (when possible) by comparing the amount of performed symbolic
operations.

1.2. Related Work 3

Our experimental results show that, in practice, neither LockStep nor Collapsing
exhibit the theoretical improvents in the amount of symbolic operations required for
most of the benchmarks when compared to Naive. The performance of LockStep
is worse than Naive in regard to both runtime and symbolic operations in most in-
stances. The runtime performance of Collapsing is competitive to Naive when ran
on the converted MDP representation, but Collapsing performed more symbolic op-
erations than Naive in all of the benchmarks. Therefore the runtime advantages of
Collapsing are partially due to a varying cost of each symbolic operation due to the
modification of the transition BDD. But as the transition BDDs are constructed using
the suboptimal conversion process, the presented evidence for real-world performance
improvements is inconclusive. Comparing the amount of symbolic operations, we argue
that the edge-based representation is more efficient in the context of symbolic MEC
decomposition algorithms.

To summarize, this thesis contributes:

• the (to the best of our knowledge) first implementation of LockStep using an
MDP representation with edge-based actions and the first implementation of
Collapsing,

• an empirical evaluation of three symbolic MEC decomposition algorithms Naive,
LockStep, Collapsing, and

• a novel symbolic algorithm to convert an edge-based action representation of an
MDP into using vertex-based actions.

1.2 Related Work

Given a graph of an MDP consisting of n vertices and m edges, previous results regard-
ing the computation of MECs can be categorized by the usage of explicit and symbolic
decomposition algorithms.

Explicit Algorithms. The basic MEC decomposition algorithm described in [DA98]
takes O(n ·m) operations in the worst-case [CH14]. In the works of [CH11], this al-
gorithm is improved upon by first introducing a lockstep search based on the depth-
first search algorithm for strongly connected components by Tarjan [Tar72]. While
this lockstep algorithm requires O(m ·

√
m) operations, they provide a second algo-

rithm which reduces the number of searches in a lockstep search with a runtime of
O(m · n2/3). In [CH14], another algorithm is presented with a runtime of O(n2) op-
erations, where an algorithm to find the winning set of Büchi games is adjusted to
find bottom strongly connected components (SCCs) instead. While these algorithms
are deterministic, a randomized explicit algorithm exists which utilizes a decremen-
tal SCC algorithm, which recomputes SCCs based on deleted edges [CDHS19]. This
randomized algorithm has a runtime of Õ(m) operations (where Õ hides logarithmic
factors). The works of [WKB14] focused on a faster implementation of the basic O(n2)
decomposition algorithm by presenting a GPU based implementation. Here, empirical

4 Chapter 1. Introduction

results have shown up to 79 times faster MEC decompositions when compared to a
CPU based implementation.

Symbolic Algorithms. The symbolic implementation of the MEC decomposition
algorithm described in [DA98] requires O(n2) symbolic operations when utilizing a
linear time symbolic SCC decomposition algorithm [CHL+18]. Similar to the explicit
algorithm improvements, [CHL+18] introduces a novel symbolic lockstep algorithm
which is then used to improve the MEC decomposition algorithm to O(n·

√
m) symbolic

operations. The symbolic algorithm shown in [CDHS21] focuses on detecting and
collapsing ECs quickly with a space-time tradeoff. Their proposed MEC decomposition
algorithm requires O(n2−ε · log(n)) symbolic operations, in which they set ε = 0.5 to
obtain a decomposition in Õ(n ·

√
n) symbolic operations.

Empirical Evaluation. To the best of our knowledge, no experiments to compare
the runtime performance of the symbolic or explicit MEC decomposition algorithms
in practice exist1. The importance of benchmarks can be seen in the recent works
of [LSS+23], where various symbolic SCC decomposition algorithms are benchmarked:
although one of the SCC algorithms has an optimal runtime complexity of O(n) sym-
bolic operations, it has an unusually high space requirement, which in practice can
lead to worse runtime performance than the naive O(n2) algorithm.

1.3 Structure of the Thesis

This thesis is structured as follows: MDPs, their graph-like structures and all the
notions used for MEC decompositions are formally defined in Chapter 2. Chapter 3
outlines BDDs and shows how BDD operations work exclusively with sets by looking
at an implementation of the logical And operation. In Chapter 4, we look at how
an MDP is implemented in Storm by matching the symbolic version with the sparse
representation. The novel symbolic algorithm to convert the MDP representation is
found at the beginning of Chapter 5, in which the core idea of each symbolic algo-
rithm is also outlined. The main contributions are found in Chapter 6, where both the
symbolic conversion and MEC decomposition algorithms are experimentally evaluated.
In addition to the runtime performance, we also benchmark the amount of symbolic
operations to see whether the theoretical algorithm improvements on symbolic opera-
tions hold in practice and evaluate which symbolic MDP representation is preferable
for computing MEC decompositions.

1[CHL+18] contains benchmarks utilizing the symbolic lockstep algorithm on MDPs, but their
measurements begin after preprocessing the graphs, which includes computing all SCCs and MECs of
the graph.

Chapter 2

Preliminaries

2.1 Strongly Connected Components

Definition 2.1 Given a directed graph G = (V,E) and two vertices v1, vn ∈ V with
v1 6= vn, the vertex vn ∈ V is considered to be reachable from v1 ∈ V iff the vertices
{v1, ..., vn} = V ′ ⊆ V exist such that (vi, vi+1) ∈ E ∀1 ≤ i < n. If |V ′| is minimal,
then we consider the distance between the vertices v1, vn to be d(v1, vn) = |V ′| − 1.

Definition 2.2 A directed graph G = (V,E) is considered to be strongly connected iff
for all pairs of vertices v1, v2 ∈ V , the vertex v2 is reachable from v1. U ⊆ V is a strongly
connected component (SCC) of G iff the induced subgraph G[U] := (U, (U ×U)∩E) is
strongly connected and U is maximal; that is no U ′ with U (U ′ ⊆ V exists for which
G[U ′] is strongly connected.

Additionally, if the subgraph of an SCC consists of only one vertex without a self-loop
then it is considered to be a trivial SCC. The SCC decomposition of a graph is a
partition U1, ..., Un of V such that Ui is an SCC ∀1 ≤ i ≤ n, and every vertex v ∈ V
belongs to precisely one Ui.

Definition 2.3 An SCC U is a bottom SCC iff the SCC has no outgoing edges,
meaning (U × (V \ U)) ∩ E = ∅. U is a top SCC iff U has no incoming edges,
i.e. ((V \ U)× U) ∩ E = ∅.

Definition 2.4 An SCC with its vertices V ′ is said to have a diameter of n if n =
max{d(va, vb) | va, vb ∈ V ′ : va 6= vb}.

5

6 Chapter 2. Preliminaries

2.2 Separators

Definition 2.5 Let G = (V,E) be a graph with |V | = n vertices and an SCC U ⊆ V .
For q ∈ N, a q-Separator is a set of vertices T with ∅ (T ⊆ U such that each SCC of
the subgraph G[U \ T] contains at most n− q · |T | vertices.

In other words, a q-Separator is a set of vertices which, when removed from U , splits
U into smaller SCCs, where q denotes the “quality” of the separation: the higher q, the
smaller the separated SCCs will be (see e.g. Fig. 2.1).

q = 3 q = 4

Figure 2.1: Two separators (yellow) of varying quality q on the same directed graph.
After the removal of the separator, the resulting SCCs of the graph are marked in gray.

2.3 Markov Decision Process

A Markov decision process (MDP) is a transition system with states, on which an
action can be chosen. The current state and the chosen action yield the next state
using a known probability distribution.

Definition 2.6 An MDP is a tuple M = (S,A, dinit, δ, r), where S is a finite set of
states, A is a finite set of actions, dinit : S → [0, 1] is the initial state distribution
function, δ : S × A × S → [0, 1] is the transition probability function, and r : S ×
A × S → R is the reward function. We assume that each action is unique, meaning
∀s1, s′1, s2, s′2 ∈ S, α ∈ A: if δ(s1, α, s′1) > 0 and δ(s2, α, s′2) > 0, then s1 = s2.

Furthermore, we will use the notion of reachability between states of an MDP similar
to reachability between vertices on a graph (see Def. 2.1):

2.4. Policies and Properties 7

Definition 2.7 Given an MDPM = (S,A, dinit, δ, r) the state sn ∈ S is considered to
be reachable from s1 ∈ S iff there exists a sequence of states s2, s3, ... ∈ S and actions
α1, α2, ... ∈ A such that δ(si, αi, si+1) > 0 ∀1 ≤ i < n.

The initial state distribution function with
∑

s∈S dinit(s) = 1 describes the probability
dinit(s) of starting in state s ∈ S. The transition probabilty function δ describes the
probability δ(s, α, s′) of transitioning from state s ∈ S into s′ ∈ S using action α ∈ A.
In other words, for s ∈ S with α ∈ A:

∑
s′∈S δ(s, α, s

′) ∈ {0, 1}. α ∈ A is said to be
enabled on s ∈ S iff a state s′ ∈ S exists with δ(s, α, s′) > 0. Let A[s] ⊆ A denote the
set of actions enabled on state s ∈ S. It is required that A[s] 6= ∅ for all s ∈ S. The
function r yields the reward r(s, α, s′) after transitioning from state s ∈ S into state
s′ ∈ S using action α ∈ A.

Informally, one starts in a state randomly determined using the probabilities given by
dinit. At every state s ∈ S, an enabled action α ∈ A[s] is chosen nondeterministically.
Afterwards, one is transitioned into a successor state s′ ∈ S, which is randomly chosen
using the probablities given by δ, and a reward r(s, α, s′) is given.

MDPs provide a simple, yet powerful abstraction to model probabilistic behaviours in
combination with governable decisions. As such, MDPs have been employed to model
real-world problems, a variety of which are listed in the works of [Whi85, Whi88,
Whi93, BVD17].

2.4 Policies and Properties

When modelling problems using MDPs, one is often interested in policies dictacting
which action should be taken at any specific state. Policies which are only dependent
on the current state are often referred to as memoryless or positional policies, which
can be formally described using a function fPolicy : S → A. Some objectives such as
visiting all possible states in a finite MDP greatly benefit from policies which take the
history of previous states into account.

However, the field of model checking goes beyond just policies: model checking system-
atically checks properties of all states of a model, which can be of varying complex-
ity [BK08]. The properties of an MDP can in turn provide insight into the real-world
systems being modelled. For example, simple reachability properties on MDPs might
be:

• Which states are reachable?

• What is the probability of reaching any or all states of a subset S′ (S?

• Can a policy guarantee that a specific state s ∈ S is never reached?

8 Chapter 2. Preliminaries

Büchi and Streett objectives extend on this notion: a Büchi objective checks whether a
given set of states can be visited infinitely often, while Streett objectives are concerned
with infinite paths, which often arise in the field of verification [CDHS19]. Other long
term properties might check what the minimum or maximum expected average rewards
of an MDP can be [CDHL16].

While the listed properties are only a small selection, they make heavy use of maximal
end components (MECs) [CDHL16], which will be formally introduced in Chapter 2.6.
In short, MECs describe parts of an MDP which, using certain policies, will never be
left once entered.

2.5 Graph-Like Structures of MDPs

In the context of model checking, properties of a given MDP M are verified using
graphs or graph-like structures which modelM. The definition of the (often simplified)
structure varies depending on the application (see e.g. [Put94, BK08, CH11, SLL09]).

In this thesis, we are only interested in the computation of maximal end components
(MECs), which will be formally introduced in Chapter 2.6. The computation of MECs
is usually performed on one of the following graph-like structures [CHL+18, CDHS21,
HM18, BCC+14], which model and simplifyM:

Definition 2.8 LetM = (S,A, dinit, δ, r) be an MDP. The graph-like structureGEBA =
(V,E) modelsM with

V = S,

E = { (s, α, s′) | s, s′ ∈ S, α ∈ A : δ(s, α, s′) > 0 },

and the graph-like structure GVBA = (V,E) modelsM with

V = VP︸︷︷︸
{vs | s∈S}

∪ VR︸︷︷︸
{vα | α∈A}

,

E = {(vs, vα) | s ∈ S, α ∈ A[s]}︸ ︷︷ ︸
VP to VR

∪{(vα, vs′) | s, s′ ∈ S, α ∈ A[s] : δ(s, α, s′) > 0}︸ ︷︷ ︸
VR to VP

,

where VP are the player vertices and VR are the random vertices. Edges which originate
from VP are player edges, while edges which originate from VR are considered random
edges.

Both GEBA and GVBA simplify M as can be seen in Fig. 2.2: the initial state distri-
bution dinit and the rewards r are omitted entirely. For the transition probabilities δ
using s, s′ ∈ S and α ∈ A, it is only relevant whether δ(s, α, s′) > 0 or δ(s, α, s′) = 0.

To the best of our knowledge, no terminology has been established for these two differ-
ent graph-like constructions. As such, we will refer to GEBA as a graph-like structure
using edge-based actions and similarly to GVBA using vertex-based actions.

2.5. Graph-Like Structures of MDPs 9

P1

P3P2
α1,

1
4 α1,

3
4

α2,
3
4 α3,

1
2

β3, 1

α2,
1
4

α3,
1
2β2, 1

(a)

P1

P3P2

Rα1

Rα2

Rβ2

Rα3

Rβ3

(b)

P1

P3P2

α1 α1

α2 α3

β3

α2

α3β2

(c)

P1

P3P2

α1 α1

α2 α3

β3 α3β2

(d)

Figure 2.2: The same MDP (a) depicted using their GVBA (b) and GEBA (c). When
performing Post/Pre operations, GVBA can be used directly, while GEBA is first con-
verted to a directed graph (d).

Remark 2.9 For GEBA, which might contain self-loops, the removal of actions refers
to the removal of edges. In comparison, GVBA cannot contain self-loops and the removal
of actions refers to the removal of vertices.

10 Chapter 2. Preliminaries

When required, these graph-like structures can be converted to directed graphs (e.g.
when computing SCCs). For GVBA, no additional processing is required as the graph-
like structure is also a directed graph. For GEBA, edges with equal source and desti-
nation vertices but with differing actions are merged. More formally, the edges of the
converted graph are as follows:

E = {(s, s′) | s, s′ ∈ S, ∃α ∈ A : δ(s, α, s′) > 0}

We will use to Pre(X) to refer to the set of vertices V ′ ⊆ V which have an edge to X,
and Post(X) to refer to the vertices V ′ ⊆ V which have an incoming edge from X.

2.6 Maximal End Components

Definition 2.10 Given an MDPM = (S,A, dinit, δ, r), an end component (EC) con-
sists of a non-empty set S′ ∪A′ of states S′ ⊆ S and actions A′ ⊆ A such that

1. A′[s] 6= ∅ ∀s ∈ S′ and
⋃
s∈S′ A′[s] = A′,

2. for each s1, sn ∈ S′: sn is reachable from s1 using only states s2, s3, ... ∈ S′ with
actions α1, α2, ... ∈ A′,

3. for each s, s′ ∈ S, α ∈ A′: if δ(s, α, s′) > 0 and s ∈ S′, then s′ ∈ S′

all hold. An EC X is maximal (MEC) iff S′ and A′ are maximal with regard to set
inclusion.

Each state belongs to at most one MEC. Informally, an EC X describes a part of an
MDP which, once entered and using only actions part of X, will never be left again.
Therefore MECs are especially interesting for long term properties and are heavily used
during the processing of e.g. Büchi and Streett objectives [CDHL16], which usually
require computing an MEC decomposition:

Maximal End Component Decomposition

Given: An MDPM = (S,A, dinit, δ, r).
Task: Find all MECs ofM. Each MEC consists of a set of states and actions.

2.6. Maximal End Components 11

P1

P2

P3

P4

α1

α1

α2

α3

α3β4

α4

P1

Rα1

P2

Rα2

P3 Rα3

P4Rβ4

Rα4

Figure 2.3: MEC decomposition of an MDP for both of its graph-like structures GEBA

(left) and GVBA (right). Each MEC is marked in yellow. For GVBA, each MEC consists
of a set of vertices. For GEBA, each MEC consists of a set of vertices and actions (also
marked in yellow).

In the context of this thesis, we compute MEC decompositions using the graph-like
structures GEBA and GVBA of M (see Fig. 2.3). The algorithms to compute these
decompositions are shown later in Chapter 5.5. Using the graph-like structures, an EC
X exhibits the following properties:

• For GVBA, X consists of vertices. For GEBA, X consists of vertices and actions.

• Let G be the (converted) directed graph of the graph-like structure ofM. Then
G[X] is strongly connected.

• For GEBA, there are no transitions with an action α ∈ X which point to a vertex
v 6∈ X. For GVBA, there are no random edges of X which point to a vertex
v 6∈ X. For both structures, we will refer to this property as ROut(X) = ∅,
where ROut(X) returns the actions or vertices of X which would violate this
property.

12 Chapter 2. Preliminaries

2.7 Random Attractors

Definition 2.11 Let M = (S,A, dinit, δ, r) be an MDP and X a set of states and
actions. The Random Attractor of X (AttrR(X)) is defined as a set containing:

1. All elements of X,

2. Actions α ∈ A with δ(s, α, s′) > 0 for states s ∈ S, s′ ∈ AttrR(X) and

3. States s ∈ S for which all actions α ∈ A[s] are contained in AttrR(X).

In other words, X describes a section of an MDP, and AttrR(X) is the part of the MDP
in which, once entered, there is always a positive probability to reach X, no matter
which actions are chosen (see e.g. Fig. 2.4).

P1

P3 P2

α1

α3

α2

α2

β2

β2

P1Rα1 Rα2

P2Rβ2

P3 Rα3

Figure 2.4: Random attractor of action α1 on an MDP visualized on both of its graph-
like structures GEBA (left) and GVBA (right).

Chapter 3

Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are structures which can encode arbitrary Boolean
functions. While first developed in the context of logic circuit modelling ([Lee59, Ake78]
as outlined by [DB13]), BDDs are extensively used in model checking. After covering
notations and operations used in this thesis for Boolean terms and functions, this
chapter will provide an introduction into BDDs and operations on BDDs.

3.1 Notation

The value of a Boolean variable x is defined to be either 0 (“false”) or 1 (“true”). For two
(or more) Boolean variables x1, x2 ∈ {0, 1}, logical operations are denoted as follows:

• Conjunction: x1 · x2, or x1x2

• Disjunction: x1 + x2

• Negation: x1

For Boolean functions f : {0, 1}n → {0, 1}, for example f(x1, x2, x3) = x1 + x2x3, the
following additional operations are defined:

• Restriction: let b ∈ {0, 1}. Then, f |xi=b := f(x1, ..., xi−1, b, xi+1, ..., xn)

• Existential quantification: ∃xi(f) := f |xi=0+f |xi=1, which yields a new function
f ′(x1, ..., xi−1, xi+1, ..., xn). Multiple existential quantifications ∃x1...∃xn(f) will
be written as ∃{x1, ..., xn}(f)

3.2 Naive BDDs and Reduced Ordered BDDs

The simplest implementation of a BDD is a tree, where each internal node with children
represents a Boolean variable xi with two outgoing edges: a high edge and a low edge.
Here, we will write var(v) to refer to the variable xi encoded in node v, while low(v)

13

14 Chapter 3. Binary Decision Diagrams

and high(v) refers to the children of v. Each leaf of the BDD represents either true or
false. Thus a path from the root of the BDD to a leaf represents a function evaluation,
where the high edge at node xi indicates that xi is set.

x1

x2 x2

x3 x3 x3 x3

1 0 0 1 1 0 1 1

x1 x2 x3 f

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Figure 3.1: An ordered BDD with the truth table of the Boolean function being mo-
delled.

Such a BDD can be seen in Fig. 3.1. However, the number of nodes grow exponentially
with the number of Boolean variables: a function with t Boolean arguments results in
a tree with 2t+1 − 1 nodes. To address this issue, Reduced Ordered Binary Decision
Diagrams (ROBDDs) are usually used when BDDs are mentioned [Bry86]:

x1

x2 x2

x3 x3x3 x3

1 0 0 1 1 0 1 1

(a)

x1

x2 x2

x3 x3 x3

0 1

(b)

x1

x2 x2

x3 x3

0 1

(c)

Figure 3.2: The initial BDD contains identical terminal leaves and duplicate sub-trees
(marked in mint, (a)). The intermediate BDD now contains a node with identical
outgoing edges (marked in red, (b)). After its removal, the BDD is now fully reduced
and is thus an ROBDD (c).

A reduced BDD is derived from a BDD by applying the following three reduction rules
repeatedly:

1. Duplicate terminal nodes: merge identical terminal leaves.

2. Duplicate, isomorph sub-trees: merge two nodes representing the same Boolean
variable xi iff their sub-trees are equivalent.

3. low(v) = high(v): a node v can be skipped over and omitted if both of its edges
point to the same node.

3.3. And Operation on ROBDDs 15

The resulting decision diagram generally is no longer a tree but an acyclic directed
graph (see Fig. 3.2).

An ordered BDD is a BDD with an established variable ordering x1 < x2 < ... <
xt, meaning the variables encountered on a path from the root to a leaf of a BDD
are in a specific order. While the variable ordering can be arbitrary, it has a great
influence on the compressibility (see Fig. 3.3). Additionally, a fixed variable ordering
makes ROBDDs unique: two Boolean functions f(x1, ..., xn), g(x1, ..., xn) are logically
equivalent (f = g) iff the ROBDDs of f and g are the same.

x5

x4

x3

x2

x1

0 1

(a)

x1

x3 x3

x5 x5 x5 x5

x2 x2

x4 x4

0 1

(b)

Figure 3.3: Two ROBDDs of the same Boolean function x1x2 + x3x4 + x5 using two
different variable orderings.

Further optimizations of ROBDDs exist. For example, some implementations add
Complement Edges such that a BDD for a function f can also easily represent f by
setting a flag which logically inverts the leaf values (e.g. [BRB91]). Further space
savings can be achieved by introducing the notion of a Multi-Rooted or Shared BDDs,
in which multiple BDDs share parts of their graph with another [MSS07].

Additionally, the concept of a BDD can be extended: Multi-Terminal BDDs (MTB-
DDs) or also referred to as Algebric DDs (ADDs) are DDs with non-Boolean terminal
nodes ([BFG+97, FMY97]). On these DDs, leaves can have integer or real values,
and additional operations such as addition or multiplication on the DDs can be imple-
mented.

3.3 And Operation on ROBDDs

Crucially, most operations relevant for model checking do can be performed directly
on ROBDDs. Here, one possible algorithm as shown by [Bry92] is explained which
calculates f ·g given the ROBDDs of f and g, provided that f, g take the same Boolean
arguments (x1, ..., xn). Let in the following be x1 < x2 < ... < xn and let rf , rg be the
root nodes of the ROBDDs of f, g.

16 Chapter 3. Binary Decision Diagrams

Most f · g implementations rely heavily on the Shannon expansion, which states that
for any variable xi ∈ {x1, ..., xn}:

f(x1, ..., xn) = xi · f |xi=1 + xi · f |xi=0.

First, note that the ROBDD of the restriction f |xi=b can be trivially computed if
xi ≤ var(rf):

f |xi=b =


rf , xi < var(rf)

high(rf), xi = var(rf) and b = 1

low(rf), xi = var(rf) and b = 0

(3.1)

where the resulting node is the root node of the resulting ROBDD. In the context of
f · g, it follows that

f · g︸︷︷︸
node v

= xi · (f |xi=1 · g|xi=1)︸ ︷︷ ︸
high(v)

+xi · (f |xi=0 · g|xi=0)︸ ︷︷ ︸
low(v)

. (3.2)

Therefore using Shannon expansion, the resulting BDD of f · g can be computed as
outlined in Algorithm 1. The idea is to recursively walk both f and g in the order of
x1 < ... < xn to be able to compute each restriction f |xi=b as shown in equation 3.1.

Algorithm 1: And operation f · g on two ROBDDs.
Input : Vertices: vf , vg of the ROBDDs of f, g
Output: A node of the resulting BDD f · g

if vf or vg is terminal node 0 then
return terminal node 0

if vf and vg are terminal nodes then
return terminal node vf · vg

Splitting variable xi := min{var(vf), var(vg)}
Create new node v′ with

var(v′) := xi
high(v′) :=And(f |xi=1, g|xi=1)
low(v′) :=And(f |xi=0, g|xi=0)

return v′

The algorithm starts at the root nodes rf , rg: as we only process one Boolean variable
xi in each recursion step, we compute the splitting variable xi = min{var(rf), var(rg)},
which ensures that the resulting BDD of f · g remains ordered. Then we create a new
node v′ which encodes xi: using xi with the Shannon expansion in equation (3.2),
the children high(v′)/low(v′) of v′ need to be computed by obtaining the next pair of
nodes vf , vg using equation (3.1) on rf , rg. This process is repeated recursively until

3.3. And Operation on ROBDDs 17

the obtained nodes v′f , v
′
g are both terminal leaves, as the resulting node will also be a

terminal node computed by v′f · v′g.

Therefore the algorithm builds the resulting BDD in a depth-first manner, an example
of which can be seen in Fig. 3.4: at recursion step A6B7, the algorithm is at node
A6 and at node B7 of the ROBDDs of f and g. As both A6 and B7 are terminal
nodes, the recursion stops and returns the leaf A6 · B7 = 1 · 1 = 1. Now that the
high edge of A4B3 is computed, the low edge is next. As the splitting variable of
A4B3 is min{var(A4), var(B3)} = min{x3, x3} = x3, equation (3.1) indicates that we
follow the low edge of A4 to A5, and the low edge of B3 to B5. Here we can apply an
optimization: Given that A5 is a 0-leaf, any computation of the terminal nodes A5 ·Bi
results to 0. Therefore A5B5 is a 0-leaf, which finishes the computation of A4B3, after
which the low edge A6B4 of A2B2 would be computed next.

x1

x2 x2

x3

0 1

A1

A2 A3

A4

A5 A6

f(x1, ..., x4) = x1x3 + x2

(a)

x1

x2

x3 x3

x4

0 1

B1

B2

B3 B4

B5

B6 B7

g(x1, ..., x4) = x2x4 + x3 + x1

(b)

A1B1

A2B2 A3B7

A4B3 A6B4 A5B7 A6B7

A6B7 A5B5 A6B6A6B7

(c)

x1

x2 x2

x3 x3 0 1

1 0 01

(d)

Figure 3.4: Example And operation on ROBDDs. Given two Boolean functions f
(a) and g (b), their ROBDDs (with labelled nodes) are traversed recursively (c), from
which the resulting (unreduced) BDD can be constructed (d).

18 Chapter 3. Binary Decision Diagrams

After all recursion steps are evaluated, the resulting BDD of f ·g is fully computed, but
still needs to be reduced. But with little adjustments as listed in [Bry86], the algorithm
will directly yield the final ROBDD, as the reduction rules listed in Chapter 3.2 can
be incorporated directly into the algorithm:

1. Prevention of duplicate terminal nodes: both a 0-leaf and a 1-leaf are kept track
of during generation. Once a terminal node AiBj is being generated, the stored
0- or 1-leaf is returned instead.

2. Prevention of duplicate, logically equivalent sub-trees: all generated triplets
(var(v), low(v), high(v)) are stored in a hash map. If a node v′ yielding a du-
plicate triplet is being generated, the existing node v will be re-used. As the
algorithm builds the BDD depth-first, duplicate sub-trees are discarded in a
bottom-up process.

3. Omitting nodes with low(v) = high(v): if a node v is being generated with
low(v) = high(v), simply return low(v) directly, discarding node v.

While these operations introduce a runtime and memory overhead, the amount of
nodes present in the BDD during the computation is potentially greatly reduced. Fur-
thermore, the discussed algorithm can also be adjusted to implement e.g. f + g. As
previously noted, this is just one approach of computing f · g ROBDDs. For exam-
ple, the approach of [YO97] constructs new ROBDDs in a breadth-first, parallelizable
manner.

3.4 List of BDD operations

Several more operations on BDDs are used later on, whose implementation are outside
of the scope of this thesis (see e.g. [Bry86, vD16] for possible implementations). As
such, we will assume that existential quantification, restriction as well as the following
additional operations are implemented on BDDs:

• Swap variables: given a BDD of f(x1, ..., xn), a BDD of g(y1, ..., yn) is created,
where each variable xi is renamed to yi.

• (Inverse) Relational product: let S be a set, R = {(sa, sb), ...} be a relation on S,
and fS , fR be the corresponding Boolean functions. Then the relational product
yields a Boolean function fS′ representing the set S′ = {s′ | s ∈ S : (s, s′) ∈ R}
(and for the inverse relational product the set S′ = {s′ | s ∈ S : (s′, s) ∈ R}).
The implementation of relations will be discussed in Chapter 4.2.

• Identity: given a set S, create a BDD representing the identity relation R =
{(s, s) | s ∈ S}.

Chapter 4

MDP Representation

Automatically analyzing MDPs using computers requires storage for states and tran-
sitions within a limited amount of memory, and operations on these structures can be
computionally expensive. Therefore, the implementation of them is detrimental to the
practical runtime performance of model checking algorithms.

In this section, an overview of two representations, sparse and symbolic, is given.
These representations assume an MDP M = (S,A, dinit, δ, r) with |S| = n states
and support storing and modifying vertices, edges and actions of GVBA and GEBA.
Additionally, we will outline how Post(V ′)/Pre(V ′) operations on a set of vertices V ′

are implemented. While these parts are sufficient to compute the MEC decomposition,
we will support encoding the probabilities given by δ, as they are often required to
model check properties of M. The following descriptions for GEBA are based on the
implementations in the model checker Storm [HJK+21].

4.1 Sparse Representation

In the sparse representation, each single state and transition is explicitly stored: when
referring to a set of vertices, a flag is stored for each vertex of the graph-like structure.
As these flags can be packed into a set of ordered bits, dn8 e Bytes are required for each
set of vertices, where the i-th bit set indicates that vertex i is part of the set. Operations
such as the intersection and union of two sets can be implemented by performing the
equivalent logical operations (bitwise AND, bitwise OR) on each pair of bytes.

For GVBA, the edges can be stored using an n×n transition matrix T , where the entry
ti,j 6= 0 indicates that si has an edge to sj . If si ∈ VP , then ti,j ∈ {0, 1} indicates
whether a certain action α ∈ A can be chosen from state si ∈ S. Otherwise, si ∈ VR
represents an action in A and ti,j ∈ [0, 1] encodes a probability given by δ.

For GEBA, we need to be able to differentiate between two edges (si, α, sj), (si, β, sj) ∈
E using a transition matrix T consisting of n “row groups”. Each state s ∈ S has a

19

20 Chapter 4. MDP Representation

corresponding row group containing |A[s]| rows. Each row encodes an enabled action
A[s] of s and each entry ti,j is storing a probability given by δ. For GEBA, we are only
concerned whether ti,j > 0 or ti,j = 0.

For both graph-like structures, the transition matrices of most MDPs are sparsely
populated, but its size grows quadratically with the amount of states n of the MDP. As
such, most implementations employ sparse matrices, in which only non-zero elements
are stored.

t11 · · · t1n

t21 · · · t2n
...

. . .
...

tn1 · · · tnn





s1

s2

sn

(a)

t11 · · · t1n

t21 · · · t2n

t31 · · · t3n

...
. . .

...
...

. . .
...

...
. . .

...
tm1 · · · tmn





Row Group of s1,
|A[s1]| = 2

Row Group of s2

Row Group of sn

(b)

Figure 4.1: The transition matrices of GVBA (a) and GEBA (b).

To implement the Post(V ′) operations, we need to process each vertex v ∈ V ′ individ-
ually by storing all non-zero columns of the corresponding row (group) of T . The Pre
operations can be implemented similarly by processing the corresponding column and
collecting all rows (or row groups).

While this approach is easy to implement, its scalability is limited: storing all SCCs of a
graph-like structure can quickly become infeasibly due to memory requirements, given
that large MDPs can consist of billions of states with thousands of SCCs. Additionally,
Post(V ′)/Pre(V ′) operations become more computationally expensive the larger the
set V ′ is, as each vertex (and edge) is processed individually.

4.2 Symbolic Representation

In the symbolic representation, one works with sets of vertices or edges, which are
stored using BDDs. In the context of this thesis, we work with the assumption1 that
each vertex is assigned to a unique index 0 ≤ i < n = |V |, which can be encoded

1This assumption is a simplification of program variable valuations [JM09].

4.2. Symbolic Representation 21

into t := dlog2(n)e Boolean variables x1, ..., xt by using the bits of i. A set of vertices
V ′ ⊆ V can then be encoded into a BDD:

fV ′ : {0, 1}t → {0, 1}, fV ′(x1, ..., xt︸ ︷︷ ︸
encodes s ∈ V

) =

{
1, s ∈ V ′

0, s 6∈ V ′

For GVBA, a set of edges can be encoded into an ADD similar to a transition matrix
of a sparse representation: the ADD takes a set of Boolean arguments for the source
vertex si ∈ V (row) and another set of Boolean arguments for the destination vertex
sj (column) of an edge. If the ADD evaluates to a non-zero value, then an edge from
si to sj exists, and if si ∈ VR, sj ∈ VP , then the ADD evaluates to a probability given
by δ. For the computation of MECs, the ADD of all transitions can be converted to
an (often smaller) BDD, representing the following Boolean function:

tVBA(x1, ..., xt︸ ︷︷ ︸
s∈V

(Row)

, x′1, ..., x
′
t︸ ︷︷ ︸

s′∈V
(Column)

) =

{
1, (s, s′) ∈ E
0, (s, s′) 6∈ E

This effectively implements a relation R for vertices v, v′ ∈ V , in which each element
(v, v′) ∈ R represents an edge in GVBA. As such, we can compute Post(V ′)/Pre(V ′)
of V ′ ⊆ V with the (inverse) relational product operation using tVBA and the BDD
fV ′ of V ′.

As GEBA encodes actions into the edges of the graph, an additional set of Boolean
arguments y1, ..., yu is required for the transition BDD tEBA. Here, the actions are
encoded in conjunction with the vertex given by x1, ..., xt: instead of representing all
|A| actions, we only use u Boolean variables to encode maxs∈S{|A[s]|} different values,
which results in a smaller BDD.

tEBA(x1, ..., xt︸ ︷︷ ︸
s∈V

(Row-Group)

, y1, ..., yu︸ ︷︷ ︸
α ∈ A[s]

, x′1, ..., x
′
t︸ ︷︷ ︸

s′∈V
(Column)

) =

{
1, (s, α, s′) ∈ E
0, (s, α, s′) 6∈ E

Remark 4.1 We convert tEBA to the transition BDD of a directed graph by computing
∃{y1, ..., yu}(tEBA). The (inverse) relational product on this modified transition BDD
can then be used to obtain Post(V ′)/Pre(V ′) for some V ′ ⊆ V .

While the implementation of BDDs and operations on them are more complex com-
pared to the sparse approach, the major benefit of the symbolic representation is its
scalability: as Pre(V ′) and Post(V ′) operations are performed on BDDs, all elements
of V ′ ⊆ V are processed at once. Additionally, the ability to compress BDDs (see
Chapter 3) is crucial to be able to store large sets of vertices or transitions.

22 Chapter 4. MDP Representation

But as outlined by [BK08], no single data structure is able to compactly represent all
Boolean functions, which means that there are MDPs which require very large BDDs.
The size of each BDD is also heavily influenced by the chosen Boolean variable ordering.
Although the optimal ordering for a given Boolean function is an NP-hard problem
(see [BW96]), various heuristics exist depending on the problem being modelled. Here
for transition functions, an interleaved ordering x1, x′1, ..., xt, x′t(, y1, y′1, ..., yu, y′u) tends
to yield good results [EFT93].

Chapter 5

Symbolic Algorithms

In this section we will cover three existing symbolic MEC decomposition algorithms.
As we will rely on the computation of SCCs and additional sets such as ROut(...), we
will also outline their symbolic computations for both GEBA and GVBA. Additionally,
a novel symbolic algorithm converting GEBA into GVBA is provided. Note that space
and runtime complexity of symbolic algorithms is measured in symbolic operations
and symbolic space, as these algorithms work independent of the underlying symbolic
implementation.

5.1 GEBA Conversion

In the following, it is assumed that the BDDs of GEBA are structured as outlined in
Chapter 4.2. The algorithm we propose for converting from GEBA to GVBA is described
in Algorithm 2. Informally, this conversion requires either obtaining or converting to
the following four parts of GVBA:

• the transitions from VR to VP ,
• the transitions from VP to VR,
• the player vertices VP , and
• the random vertices VR,

The core idea of the algorithm is the extension of the existing transition BDD tEBA

to have the same structure as tVBA by adding additional Boolean variables (marked in
red):

23

24 Chapter 5. Symbolic Algorithms

Have: tEBA(x1, ..., xt︸ ︷︷ ︸
Source Vertex

, y1, ..., yu︸ ︷︷ ︸
Action

, x′1, ..., x
′
t︸ ︷︷ ︸

Target Vertex

)

Want: tVBA(x1, ..., ..., ..., ..., xs︸ ︷︷ ︸
Source Vertex

, x′1, ..., ..., ..., ..., x
′
s︸ ︷︷ ︸

Target Vertex

)

tEBA after conversion: tVBA(x1, ..., xt, y1, ..., yu, z︸ ︷︷ ︸
Source Vertex

, x′1, ..., x
′
t, y
′
1, ..., y

′
u, z
′︸ ︷︷ ︸

Target Vertex

)

Intuitively, instead of limiting the use of the Boolean variables y1, ..., yn to the transition
BDD, we will use both x1, ..., xt and y1, ..., yu at all times to describe a vertex in the
converted graph-like structure GVBA. To avoid the edge case in which an action and
a state are mapped to the same vertex, we use the additional Boolean variable z to
indicate whether a vertex belongs to VR or VP . More formally, let fVEBA

be the BDD
of the vertices of GEBA, and let fVVBA

be the converted BDD for the vertices of GVBA.
The conversion algorithm uses the following convention:

fVVBA
(x1, ..., xt, y1, ..., yu, z︸ ︷︷ ︸

Vertex v

) =



1,
v ∈ VP ∧ z = 0 ∧

∧
1≤i≤u

(yi = 0) and

fVEBA
(x1, ..., xt) = 1

1,

v ∈ VR ∧ z = 1 and
there exists x′1, ..., x′t such that
tEBA(x1, ..., xt, y1, ..., yt, x

′
1, ..., x

′
t) = 1

0, v 6∈ (VP ∪ VR)

The original transition BDD tEBA can be extended to follow these conventions, which
will result in the transitions from VR to VP (see L. 15-19). To obtain the missing
transitions from VP to VR, we first extract the actions of tEBA (L. 6). By creating
an identity BDD (L. 7), we can create a set of transitions consisting of self-edges on
VR (L. 7-8), which can be transformed to originate from their corresponding states (L.
9-13). This yields the transitions from VP to VR. These two sets of transitions can be
combined to form the converted transition BDD tVBA of GVBA (L. 20).

The player vertices VP are represented by the BDD fVEBA
, which needs to be extended

to follow our conventions (L. 23-26). The BDD of the random vertices VR can be
retrieved from tVBA using the transitions whose origins start from a vertex with the
z flag set to 1 (L. 28-29). Together with tVBA, this results in a completed conversion
from GEBA to GVBA.

5.1. GEBA Conversion 25

Algorithm 2: Conversion of GEBA to GVBA.
Input : The vertices VEBA and the transition BDD tEBA of GEBA

Output: The converted graph-like structure GVBA = (V, VP , VR, tVBA)

1 // Create new Boolean variables not present in tEBA

2 z, z′ := createBddVars(2) // Flags
3 y′1, ..., y

′
u := createBddVars(u) // Missing column vars of y1, ..., yu

4 // Convert transitions
5 // Create Player to Random vertices transitions TP→R
6 A := ∃{x′1, ..., x′t}(tEBA) // Actions of GEBA

7 I0 := createIdentityRelationBdd((x1, x
′
1), ..., (y1, y

′
1), ...)

8 I1 := I0 ∧A.swapVariables((x1, x′1), ..., (y1, y′1), ...)
9 TP→R := ∃{y1, ..., yt}(I1)

10 foreach yi ∈ {y1, ..., yu} do
11 TP→R := TP→R ∧ createBdd(yi = 0)

12 TP→R := TP→R ∧ createBdd(z = 0)
13 TP→R := TP→R ∧ createBdd(z′ = 1)

14 // Create Random to Player vertices transitions TR→P
15 TR→P := tEBA

16 foreach y′i ∈ {y′1, ..., y′u} do
17 TR→P := TR→P ∧ createBdd(y′i = 0)

18 TR→P := TR→P ∧ createBdd(z = 1)
19 TR→P := TR→P ∧ createBdd(z′ = 0)

20 tVBA := TP→R ∨ TR→P

21 // Create vertices
22 // Player vertices VP
23 VP := VEBA // Vertices of GEBA

24 foreach yi ∈ {y1, ..., yu} do
25 VP := VP ∧ createBdd(yi = 0)

26 VP := VP ∧ createBdd(z = 0)

27 // Random vertices VR
28 VR := ∃{x′1, ..., y′1, ..., z′}(tVBA)
29 VR := VR ∧ createBdd(z = 1)

30 V := VR ∨ VP

31 return (V, VP , VR, tVBA)

26 Chapter 5. Symbolic Algorithms

Using the presented conversion process, the results on GVBA can be trivially converted
back into GEBA: given the BDD fV1 = (x1, ..., xt, y1, ..., yu, z) of a set of player vertices
V1 ⊆ VP , the corresponding vertices in GEBA are given by ∃{y1, ..., yt, z}(fV1). For a set
of random vertices V2 ⊆ VR with the BDD fV2 = (x1, ..., xt, y1, ..., yu, z), the transitions
tEBA can be constrained to the corresponding actions of fV2 using tEBA ∧ ∃z(fB).

During this conversion process, we add u+2 additional Boolean variables to the tran-
sition BDD, which will increase its size. Due to the usage of ROBDDs, it is difficult
to tell how much the size of the converted transition BDD of GVBA deviates from the
original transition BDD of GEBA. We will evaluate the BDD sizes before and after the
conversion experimentally in Chapter 6.2.

Remark 5.1 The introduction of the Boolean variables z, z′ might not be required
in all instances. Furthermore, we can easily construct an MDP M = (S,A, dinit, δ, r)
such that 2(u+t) � (|S|+ |A|), meaning the converted transition BDD (as well as every
BDD of a set of vertices) uses more Boolean variables than required. Therefore, the
BDDs of the converted graph-like structure GVBA will likely contain more nodes than
a “native” implementation, meaning an implementation of GVBA which does not rely
on the conversion from GEBA to GVBA. As such, we say that this conversion algorithm
is suboptimal in regard to the size of the resulting BDDs of GVBA.

5.2 SCC Decomposition

For sparse representations, the usual approach to build an SCC decomposition is to
perform a depth-first search while labelling and storing information for each individual
node. As described by [Tar72], all SCCs of a graph G = (V,E) can be computed in
O(|V |+ |E|) operations using O(|V |) space. However, this approach is unsuitable for
symbolic graphs, as the primary advantage of symbolic operations using BDDs is to
work on sets of nodes simultaneously.

Symbolic algorithms generally compute SCCs using forward and backward sets. In the
worst-case, a naive SCC decomposition algorithm runs in O(|V |2) steps on a directed
graph G: starting from a vertex v ∈ V , all reachable vertices are computed by repeat-
edly performing Post operations, forming the forward set. Likewise, this process is
repeated on v to compute its backwards set using Pre operations. Then, the SCC C
which v is part of is the overlap between the forward and backward set (see Fig. 5.1).
After removing C, this process is repeated until all vertices of G have been processed.

5.3. Random Attractor 27

Backward Set

Forward Set

SCC

Figure 5.1: Excerpt of a directed graph. The SCC containing the vertex marked in
yellow can be computed by retrieving the overlap between the forward set and the
backward set of the marked vertex.

Various SCC decomposition algorithms exist which aim to improve the worst-case
runtime of this naive approach (see [LSS+23] for an overview). But generally, they all
build upon the computation of forward and backward sets while reducing the amount
of redundant Post/Pre operations, e.g. by terminating the computation of a forward
or backward set early if possible. To date, the best symbolic SCC decomposition
algorithms run in O(|V |) symbolic steps in the worst-case [GPP03, LSS+23]. Analysis
by [CDHL18] provides lower bounds for the symbolic computability of SCCs, which
proves the computational runtime complexity of O(|V |) to be "essentially optimal"1.

5.3 Random Attractor

On GVBA, [CDHS21] computes the random attractor (see Def. 2.11) AttrR(S) of S ⊆ V
on GVBA iteratively using

A0 = S

Ai+1 = Ai ∪ (Pre(Ai)︸ ︷︷ ︸
All vertices which

point into Ai

\ (VP ∩ Pre(V \Ai))︸ ︷︷ ︸
Player vertices which

do not all point into Ai

)

until the last set Aj equals the previous set Aj−1. We modify this algorithm to be
usable on GEBA by computing the set of states and the set of actions for each iteration
separately. In Algorithm 3, we follow the assumption that we only compute the random
attractor of ROut(S) of an SCC S and that the BDDs of GEBA are structured as
outlined in Chapter 4.2.

1[CDHL18], p. 2349

28 Chapter 5. Symbolic Algorithms

We start by computing the new set of states to add, meaning all states whose enabled
actions are all part of AttrR. In Line 6, we store all states S1 which have at least one
enabled action not in AttrR. We then compute all states S2 which have an enabled
action in AttrR and remove all states of S1 from it. Afterwards we can add S ∩ S2 to
AttrR. With the updated set of states, we continue to compute a new set of actions
to add: if any transition of S leads into a state contained in AttrR, we can retrieve its
action (A1) and add it to AttrR. If no new actions have been added, no new states
will be added either and we can terminate this loop.

Algorithm 3: Computation of AttrR on GEBA.
Input : GEBA,

the set of states S of the current SCC,
the set of actions A of which to compute the attractor of.

Output: Rn, which contains a set of states and a set of actions.

1 Rn := (states := ∅, actions := A) // Iteration i
2 Rc := Rn // Iteration i+1
3 do
4 Rc := Rn

5 // Update States
6 S1 := ∃{y1, ..., yu, x′1, ..., x′t}(tEBA ∧ ¬Rc.actions)
7 S2 := (∃{y1, ..., yu}(Rc.actions)) ∧ ¬S1
8 Rn.states := (Rc.states ∨ S2) ∧ S

9 // Update Actions
10 S′n := Rn.states.swapVariables((x1, x

′
1), ..., (xt, x

′
t))

11 A1 := ∃{x′1, ..., x′t}(S ∧ tEBA ∧ S′n)
12 Rn.actions := Rc.actions ∨A1

13 while Rc.actions 6= Rn.actions
14 return Rn

5.4. Random Out 29

5.4 Random Out

To identify whether an SCC S of G is an (M)EC, we need to check whether ROut(S) =
∅ (see Chapter 2.6). For GVBA, we can retrieve these outgoing actions as vertices
([CHL+18, CDHS21]):

ROut(S) = Pre(V \ S)︸ ︷︷ ︸
All vertices with
edge leaving S

∩ (S ∩ VR)︸ ︷︷ ︸
Random vertices

of S

For GEBA with a transition BDD tEBA(x1, ..., xt, y1, ..., yu, x
′
1, ..., x

′
t), we adjust the

computation as follows: let fS(x1, ..., xt), f ′S(x
′
1, ..., x

′
t) each be a BDD describing the

vertices of S. Then the BDD of ROut(S) containing outgoing actions can be computed
with

fROut(S)(x1, ..., xt, y1, ..., yu) = ∃{x′1, ..., x′t}(tEBA ∧ fS ∧ fS′).

5.5 MEC Decomposition

In this subsection, an overview of three MEC decomposition algorithms Naive, Lock-
Step and Collapsing on GEBA and GVBA is given [CHL+18, CDHS21]. We will as-
sume that the graph-like structure G contains |V | = n vertices and |E| = m edges and
that an SCC decomposition is computed in a linear amount of symbolic steps (using
e.g. [GPP03, LSS+23]).

5.5.1 Algorithm Naive

The Naive MEC decomposition algorithm is a symbolic implementation of a basic
MEC decomposition described in [DA98] (see e.g. [CDHS21]). Naive decomposes G
into maximal, non-trivial SCCs and processes each SCC S as follows: if S has no
leaving random edges (ROut(S) = ∅) then S is an MEC. Otherwise, the associated
actions α ∈ ROut(S) are removed from G. As this might change the connectivity of
S, S is recursively processed by re-computing its SCC decomposition. An execution of
this algorithm can be seen in Fig. 5.2.

During the MEC decomposition of Naive, the same vertices (and edges) are likely
to be traversed several times due to the recomputation of SCCs. As an opti-
mization described and formally proven in [CH11, CHL+18], the random attractor
AttrR(ROut(S)) can be computed and removed from G instead (see Fig. 5.3). Re-
gardless of the optimization, the algorithm requires O(n2) symbolic steps with O(log n)
symbolic space in the worst-case [CDHS21].

30 Chapter 5. Symbolic Algorithms

P1 P2

P3 P4 P5

P6

α1

α2
β2

α3

α4

β4

β4

α6 α5

(a)

P1 P2

P3 P4

P6

α1

α2
β2

α3

α4
α6

(b)

P1 P2

α1

α2

(c)

Figure 5.2: Execution of Naive:
(a): GEBA is decomposed into SCCs. The SCC {P5} with the action α5 is identified
as an MEC (yellow) due to ROut({P5}) = ∅. The other SCC C is not an MEC (gray)
due to the outgoing action β4.
(b): After the removal of β4, another SCC decomposition on C is performed. The SCC
{P3, P4, P6} has no outgoing actions and is thus identified as an MEC with its actions
{α3, α4, α6}. The other SCC {P1, P2} is not an MEC due to the outgoing action β2.
(c): After the removal of β2, the final SCC decomposition on {P1, P2} is performed.
The resulting SCC has no outgoing edges and is identified as an MEC with its actions
{α1, α2}.

5.5. MEC Decomposition 31

P1

P2

P3 P5

α1

α1

α2

α2
α3 α3

β5

α5

P1

P2

P3 P5

α2

α2
α3 α3

β5

α5

P2

P3 P5

α2

α2
α3 α3

β5

α5

...

P5

β5

P1

P2

P3 P5

α1

α1

α2

α2
α3 α3

β5

α5

P1

P2

P3 P5

α1

α1

α2

α2
α3 α3

β5

α5

P5

β5

Figure 5.3: In the most basic version of Naive, the algorithm only removes the outgo-
ing actions ROut(...) and then recomputes an SCC decomposition. This process is re-
peated several times until the MEC is identified (top). By removing AttrR(ROut(...))
(yellow) instead, the vertices {P1, P2, P3} and the actions {α1, ..., α5} are removed,
which reduces the amount of SCC decompositions performed to achieve the same re-
sult (bottom).

32 Chapter 5. Symbolic Algorithms

5.5.2 Algorithm LockStep

The algorithm LockStep by Chatterjee et al. [CHL+18] improves the worst-case
runtime of Naive to O(n ·

√
m) symbolic operations with O(

√
m) symbolic space

([CDHS21]) by providing a symbolic implementation of a strategy used for sparse
MEC decomposition (see [CH11]). The core idea of LockStep is to identify bottom
SCCs (see Def. 2.3) quickly using a lockstep search.

To understand in which scenario Naive can be improved upon, let us take a look at
the example shown in Fig. 5.4 of an SCC S. Naive proceeds as follows:

• We identify and remove the outgoing actions γ1, β4 of S.
• We perform an SCC decomposition on S, where we traverse over the large EC

and identify the two SCCs A,B.
• When processing A, we identify the outgoing action β1 and need to perform

another SCC decomposition of A, where we traverse over the large EC once
more.

P1

Large EC

P4

γ1 β4β4

β1α1
α4

SCC A
SCC B

P1

Large EC

P4P4

β1α1
α4

SCC A
SCC B

Figure 5.4: The pictured SCC S on GEBA has two outgoing actions γ1, β4, whose
removal will split S into two SCCs A,B (right).

Here, the early identification of the bottom SCC A is beneficial, as LockStep runs as
follows:

• Like Naive, LockStep identifies and removes the outgoing actions γ1, β4.
• Now a lockstep-search is started on every vertex which have lost an edge (P1, P4)

to find a bottom SCC.
• The search terminates before traversing most of the large EC and yields the

bottom SCC B, which is identified as an MEC and removed from C.
• C is now the same as A in Naive, but we avoided one traversal of the large EC.

5.5. MEC Decomposition 33

LockStep exploits the fact that, after the removal of all outgoing of an SCC, at least
one bottom SCC exists (which might be trivial): let S be obtained after removing
AttrR(ROut(...)) from some SCC which is not an MEC. If S is still strongly con-
nected, then S has no outgoing actions, which means S has no outgoing edges and
is thus a bottom SCC. If S is not strongly connected, then the SCC decomposition
of S must contain at least one top and one bottom SCC which are disjoint (as noted
by [CHL+18]). Crucially, if TS ⊆ S is the set of vertices which have lost an outgoing
edge, then each bottom SCC of S has at least one vertex contained in TS . If vb ∈ TS is
a vertex of a bottom SCC, then exploring all reachable vertices from vb using repeated
Post operations yields the bottom SCC. The lockstep search conducts |TS | searches in
parallel by performing one Post-operation in each iteration for each search and returns
the earliest found bottom SCC.

Chatterjee et al. further optimize the lockstep search by aborting a search early if
possible. Consider the searches from two vertices vA, vB ∈ TS . where vB is reachable
from vA. If vA and vB belong to the same SCC, then vA is reachable from vB as well. If
vA and vB belong to disjoint SCCs, then the SCC of vA has an outgoing edge, meaning
it cannot be a bottom SCC. In both cases, the search from vA and does not need to
be reconsidered until the vertex vA has lost another edge.

A complete execution of LockStep can be seen in Fig. 5.5. To summarize: LockStep
first computes the SCC decomposition of the graph-like structure G and processes each
SCC S as follows: AttrR(ROut(S)) is computed and removed from S, after which TS
is updated accordingly. Given |E| = m,

• if |TS | = 0, S has no outgoing actions and is identified as an MEC (if S is
non-trivial).

• if |TS | <
√
m, a lockstep search is started on TS until a bottom SCC C is found.

If C is non-trivial, it is identified as an MEC. C is removed from S and TS is
updated accordingly, after which S is reprocessed.

• if |TS | ≥
√
m, then the lockstep search would be too expensive. Instead, we

compute the SCC decomposition of S and process each SCC recursively.

34 Chapter 5. Symbolic Algorithms

P1

P2

P3 P4

P5

P6

P7

P8

α1α2

α3

α4
α5

α6 α7

α8

β3

γ3

β6

β6

(a)

P3 P4

P5

P6

P7

P8

α3

α4
α5

α6 α7

α8

γ3

(b)

P3 P4

P5

P6

P7

P8

α3

α4
α5

α6 α7

α8

γ3

(c)

P3 P4

P5

α3

α4
α5

(d)

Figure 5.5: Execution of LockStep:
(a): GEBA is decomposed into SCCs. The SCC {P1, P2} is identified as an MEC with
the actions {α1, α2}. The other SCC is not an MEC (gray) due to the outgoing actions
ROut(...) = {β3, β6}.
(b): After the removal of β3 and β6, a lockstep search is started from the vertices
{P3, P6} which have lost an outgoing edge.
(c): The search from P3 is aborted as it encounters the starting vertex P6 of another
search. The search of P6 continues and returns a non-trivial bottom SCC {P6, P7, P8},
which is identified as an MEC with the actions {α6, α7, α8}.
(d): The remaining SCC is not an MEC due to ROut(...) = {γ3}. The action γ3 is
removed and a lockstep search is started from P3, which will later return the final MEC
with its actions {α3, α4, α5}.

5.5. MEC Decomposition 35

The authors of LockStep assume a graph-like structure GVBA. To compute the
set of vertices TS of the SCC S which have just lost an outgoing edge, let A =
AttrR(ROut(S)) be the set of vertices which have been removed from S. Then, TS
can be computed using TS = Pre(A) ∩ S [CHL+18]. Assuming a graph-like struc-
ture as shown in Chapter 4.2, we adjust the computation for GEBA as follows: Let
fA(x1, ..., xt, y1, ..., yu) be the BDD of the actions from the random attractor (see 5.3)
and let fS = (x1, ..., xt) be the BDD of the vertices of S. Then we can compute the
BDD fTS of TS with

fTS (x1, ..., xt) = (∃{y1, ..., yu}(fA)) ∧ fS

Additionally, we need to preprocess the transition BDD of GEBA before we can perform
Pre/Post operations (Remark 4.1). The original implementation of LockStep does
not check whether Attr(ROut(S)) = ∅; instead it only checks the set TS . On GEBA, we
add an additional check to see whether Attr(ROut(S)) = ∅ in order to only preprocess
the transition BDD again if an action was removed. This avoids redundant symbolic
operations in an edge case where multiple lockstep searches are performed consecutively
without the removal of any actions (see Fig. 5.6).

P1

P2P3

β1

β2

β3

β1
β2β3

α1

α2α3

P1

P2P3

α1

α2α3

Figure 5.6: An instance in which LockStep would perform multiple lockstep searches
consecutively without removing any actions from the transition BDD of GEBA.

5.5.3 Algorithm Collapsing

In [CDHS21], a symbolic algorithm for MEC decomposition on GVBA is presented with
a runtime of O(n2−ε log n) symbolic steps and O(nε log n) symbolic space in the worst-
case, with 0 < ε ≤ 0.5 as a trade-off parameter. The algorithm computes all MECs
in two passes: in the first pass, all vertices of non-trivial ECs of GVBA are detected
and stored. Afterwards in the second pass, the SCC decomposition of the vertices of
all ECs is computed, which yields the MEC decomposition. The main speedup of the
algorithm comes from the fast detection of ECs. Given a set of vertices X of GVBA,
one can decide whether X is an EC or not. In contrast, we might have to consider all
of GVBA in order to decide whether X is a maximal EC (see Fig. 5.7).

36 Chapter 5. Symbolic Algorithms

P1 Rα1 P2 Rα2

Rβ2

EC

MEC

P1 Rα1 P2 Rα2

Rβ2

P3 Rα3

EC

MEC MEC

MEC

Figure 5.7: Two similar graph-like structures GVBA. Here, the set of vertices {P2, Rα2}
always make up an EC, but whether they are an MEC depends on the rest of GVBA.

P3

Rα3 P4

Rβ3

Rα4

Rβ4

(a)

P3

Rβ3

Rα4

(b)

Figure 5.8: Collapsing of a detected EC (a) in GVBA into a single vertex (b).

5.5. MEC Decomposition 37

One fundamental operation used in this algorithm is the notion of collapsing an EC:
given GVBA, let an EC be given by a set of vertices X. The EC is collapsed by picking
a player vertex v ∈ X ∩ VP , redirecting all incoming edges of X into v, redirecting
all outgoing edges of X from v, and removing all other edges within X as well as the
vertices X \ {v} from GVBA. An example of this operation can be seen in Fig. 5.8.

The faster detection of ECs is achieved by reducing the cost of duplicate vertex traver-
sals on large SCCs by detecting and collapsing ECs incrementally using q-separators
(Def. 2.5). An example of the first pass, which works with a copy of the original struc-
ture of GVBA, can be seen in Fig. 5.9: whenever an SCC S is identified as an EC, it is
collapsed. Otherwise, the attractor of ROut(S) is removed from S and a q-separator
T is computed if possible:

• If T was computed, all ECs of the smaller SCCs in S \ AttrR(T) are detected
and collapsed. The remaining ECs of S are incrementally identified by iteratively
removing a single vertex v ∈ T from T and searching for an emerged EC in the
updated S \ T . Due to the collapsed ECs within S, the re-traversal of S is now
faster compared to the original graph.

• If T cannot be computed, then S has a small diameter (Def. 2.4) and is recursively
processed using its SCC decomposition.

Given a set of vertices S, the computation of T can be performed symbolically: as
explained in [CHI+16], the q-separator can be computed by building a BFS tree from
a vertex v ∈ S. Removing a layer Li of said tree from S necessarily splits S into (at
least) two SCCs. Given a large enough diameter of S, a layer Li exists which is a q-
separator. [CDHS21] describes how to symbolically compute said layer using Post/Pre
operations. The parameter ε of the algorithm determines the required diameter of S
and the quality q of the separator.

Remark 5.2 If Collapsing cannot compute a single q-separator throughout the
entire MEC decomposition, then Collapsing essentially degrades into Naive: In the
first pass, all (M)ECs are detected and collapsed on a copy of GVBA. The detection
of (M)ECs is using the same strategy as Naive, as no q-separator is computed and
therefore no incremental EC detection on collapsed ECs is performed. In the second
pass, the SCC decomposition of the detected vertices yield the MEC decomposition.

However using the symbolic representation shown in Chapter 4.2, this algorithm is not
applicable on GEBA due to the collapse operation on ECs: to collapse an EC X, we
need to adjust the incoming and outgoing edges of X, which means we need to modify
the transition BDD tEBA of GEBA = (V,E):

tEBA(x1, ..., xt︸ ︷︷ ︸
Source Vertex

s∈V

, y1, ..., yu︸ ︷︷ ︸
Action
α∈A[s]

, x′1, ..., x
′
t︸ ︷︷ ︸

Destination Vertex
s′∈V

) =

{
1, (s, α, s′) ∈ E
0, (s, α, s′) 6∈ E

38 Chapter 5. Symbolic Algorithms

Rβ5 P1

Rα1

Rγ1

P5

Rα5

Rα4 P4 Rα3

P3

P2 Rα2
Rβ1

AttrR(T)

T

EC

EC

(a)

Rβ5 P1 Rγ1

P5 Rα4 P4 Rα3

P3

P2 Rα2
Rβ1

T

(b)

Rβ5 P1 Rγ1

P5 Rα4 P4 Rα3

P3

P2 Rα2
Rβ1

T

EC

(c)

P4

P2 Rα2Rβ1

(d)

Figure 5.9: Execution of the first pass of Collapsing:
(a): Given the SCC S, a separator T := {P2, P3} is computed and S \ AttrR(T) is
decomposed into SCCs (yellow), which are individually processed. Two of the SCCs
are identified as ECs.
(b): The identified ECs are each collapsed into a single vertex. Now T will be added
back into S one vertex at a time.
(c): P3 is removed from T and a search for an SCC is started in P3 on S \T . The SCC
is identified as an EC.
(d): The identified EC is collapsed into a single vertex. P2 is removed from T and a
search for an SCC is started in P2 on S \ T . The SCC is not an EC. As T is empty, S
is finished processing.

5.5. MEC Decomposition 39

But to keep the transition BDD small, an action α ∈ A of the MDP M =
(S,A, dinit, δ, r) is represented by tEBA using both the Boolean variables x1, ..., xt of
a state s ∈ S and the Boolean variables y1, ..., yu of an action α ∈ A[s]. When adjust-
ing the source vertex of an outgoing edge of X, we inadvertently change the action of
the transition. This change can result in the merge of two originally separate actions,
as can be seen in Fig. 5.10. After a merge of actions, the correctness of detecting
the ECs and therefore the correctness of the computed MEC decomposition cannot be
guaranteed.

P4

P3 P5

α3 α4

α5

β5

β4

(a)

P4

β4

β4

(b)

Figure 5.10: Collapsing of a detected EC in GEBA (a) into a single vertex (b) leads
to the merging of the distinct actions β4, β5 due to the construction of the transition
BDD tEBA.

There are several strategies to circumvent this issue, for example: the overlap between
actions can be avoided if the symbolic representation of GEBA is changed such that
the actions are not encoded in conjunction with the vertices. However, the size of the
transition BDD would likely be significantly larger and scale worse with the amount of
states inM. Another approach could be to convert one of the colliding actions into a
different action, which would be unused or added to the transition BDD by extending
GEBA with additional Boolean variables. This would also require additional logic to
create, update and maintain a mapping of the modified actions, as the same action
might be part of several collapse operations. In this thesis we explore the approach
of symbolically converting GEBA into GVBA, which leads to a larger transition BDD
(Remark 5.1). As discussed in Chapter 5.1, the results obtained on the converted
structure GVBA can be translated back into the original edge-based representation
GEBA.

40 Chapter 5. Symbolic Algorithms

Chapter 6

Evaluation

The two MEC decomposition algorithms LockStep and Collapsing of Chatterjee
et al. [CHL+18, CDHS21] improve upon the Naive algorithm by lowering the required
amount of symbolic operations in a worst-case scenario for sufficiently large inputs.
Due to the lack of benchmarks comparing symbolic MEC algorithms, it is unknown
how they compare to another in practice. As such, we aim to answer the following
research questions:

1. Is the symbolic conversion algorithm (Chapter 5.1) a viable strategy to use algo-
rithms designed for GVBA on implementations using GEBA?

2. When compared to Naive, do empirical results reflect the worst-case theoret-
ical improvements of the symbolic MEC decomposition algorithms LockStep
and Collapsing in regard to runtime and the amount of symbolic operations
performed?

3. Which graph-like structure is more efficient in regard to the symbolic computation
of an MEC decomposition: GEBA or GVBA?

We aim to answer these questions in order by experimentally evaluating Naive, Lock-
Step and Collapsing for both graph-like structures (when possible) by comparing
both the runtime and the amount of symbolic operations of the algorithms. Simi-
larly, we will evaluate the algorithm which converts GEBA into GVBA by looking at the
runtime performance as well as the size of the generated transition BDDs.

6.1 Setup

Implementation. All three symbolic MEC algorithms were implemented into a cus-
tom build of the model checker Storm [HJK+21] using the SCC decomposition algo-
rithm of Gentilini et al. [GPP03], which is the algorithm referenced in the LockStep /
Collapsing publications [CHL+18, CDHS21]. For Collapsing, the authors obtain

41

42 Chapter 6. Evaluation

a space-time tradeoff1 by setting a parameter γ such that (2
√
n + 2) log(n) ≤ γ ≤ n.

Here, we use γ := (2
√
n + 2) log(n) (unless noted otherwise) to achieve the theoreti-

cal best runtime performance in a worst-case scenario. All code, benchmark files and
generated logs are available at [Fab23].

Benchmarks. The benchmarks consist of the quantitative verification benchmark
set [HKP+19] of which all MDP models and the underlying MDPs of the Markov au-
tomata models were considered. Storm constructs the MDPs as graph-like structures
GEBA. The BDD operations are implemented using BDD libraries, where Storm sup-
ports using either Cudd [Som97] or the multi-threaded library Sylvan [vD16]. Here,
we ran benchmarks for both BDD libraries, where Sylvan was configured to use 1, 4
and 8 threads. To evaluate the benchmarks as GVBA, each benchmark is symbolically
converted into using vertex-based actions as shown in Chapter 5.1.

For each of the 379 benchmarks, Storm constructs GEBA, optionally performs a con-
version to GVBA and computes an MEC decomposition with a total time limit of an
hour. In the following sections when referring to runtime data, we will mostly focus
on the 189 benchmarks of which at least one MEC decomposition was computed in
time. For each benchmark, the runtime of conversion to GVBA as well as the MEC
decomposition itself were both measured independently of the time it took for Storm
to construct GEBA. Here, “TO” is used to indicate that a benchmark ran out of time,
while “ME” indicates that a benchmark ran out of memory.

To gather data about the amount of symbolic operations, we restrict the benchmark
set to the 177 benchmarks of which all MEC decompositions algorithms terminated
in time. These benchmarks were re-run without a timelimit, where the amount of
symbolic operations during the MEC decomposition algorithms were counted, which
includes the operations performed during the SCC decomposition. Complexity analyses
of symbolic algorithms usually focus on the amount of Pre/Post operations, which
tend to be more computationally expensive as they operate on the larger transition
BDD [CHL+18]. As such, we will focus on these operations.

Hardware. All benchmarks were performed on machines equipped with Intel Xeon
Platinum 8160 Processors, on which 8 threads with 32GB of RAM were allocated for
each benchmark.

Quantile and Scatter Plots. The span of our results is quite large. As an example,
some benchmarks contain transition BDDs consisting of a few dozen nodes, while other
transition BDDs contain millions of nodes. We will therefore be using quantile plots
and scatter plots extensively to evaluate and visualize the results of these benchmarks.

A quantile plot is best explained by example; see e.g. Fig. 6.1 where the size of
transition BDDs are evaluated: the transition BDD of GVBA is measured on a set of

1[CDHS21], p. 12

6.2. MDP Conversion 43

benchmarks, which are sorted by the amount of nodes of the BDD. The results are
visualized by the blue line: a point (x, y) on the line means x benchmarks contain a
transition BDD with at most y nodes. This is repeated for i.e. the transition BDDs
of GEBA, which yields two additional lines. The resulting plot can then be used as an
overview of the resulting BDD sizes over all benchmarks.

To compare the results of individiual benchmarks directly, scatter plots are provided
in addition to the quantile plots. Resuming from the previous example, both axes of
the left plot in Fig. 6.3 now indicate the size of the BDD. Each marked point (x, y)
represents a single benchmark, where x is the amount of nodes of the transition BDD
in GEBA, and y is the amount after the conversion to GVBA using the same benchmark.

6.2 MDP Conversion

0 20 40 60 80 100 120 140 160 180

102

103

104

105

106

Benchmarks

M
ax

.
N
od

e
C
ou

nt

Full transition BDD GEBA

Abstracted transition BDD GEBA

Transition BDD GVBA

Figure 6.1: Quantile plot of transition BDD sizes.

For GEBA, we differentiate between two transition BDDs: the full transition BDD
contains information about each action of GEBA. Set operations such as the removal of
actions are performed on this larger BDD. Pre/Post operations are performed using the
abstracted transition BDD (Remark 4.1). The abstracted BDD does not differentiate
between actions and is computed from the full BDD using an existsAbstract operation
(see Chapter 4.2). For GVBA, no such differentiation exists as the actions are encoded
into the vertices.

44 Chapter 6. Evaluation

0 20 40 60 80 100 120 140 160 180

0.01

0.1

1

10

Benchmarks

M
ax

.
R
un

ti
m
e
(S
ec
on

ds
)

CUDD 1T

Sylvan 1T

Sylvan 4T

Sylvan 8T

Figure 6.2: Quantile plot of the symbolic GEBA → GVBA conversion for multiple BDD
library configurations.

To get an overview of the various MDP sizes, the quantile plot of Fig. 6.1 shows the
node count of the transition BDDs. As the conversion from GEBA to GVBA is done
symbolically, the conversion process itself runs quickly, as shown in Fig. 6.2 for various
BDD library configurations. In most benchmarks, the conversion can be performed
within 100 milliseconds, while only the largest transition BDDs require more than a
second to convert. As we will see in the following section, the longest MEC decompo-
sitions of this set of benchmarks are close to the time limit of an hour. Consequently,
the execution time of the conversion process is negligible when performing MEC de-
compositions on large BDDs.

In Fig. 6.3, we can observe that the converted transition BDDs of GVBA tend to
be roughly twice the size compared to the full transition BDD of GEBA. This effect
only worsens when comparing to the abstracted BDD, while some benchmarks show an
increased BDD size by one order of magnitude. We should therefore expect a noticably
higher runtime cost per Pre/Post operation when working with the converted GVBA.

In summary to answer research question 1, the conversion process itself runs fast due
to its symbolic nature, but subsequent symbolic operations on the converted graph-like
structure GVBA perform slower due to a significant increase in the size of the transition
BDD. The conversion algorithm should therefore only be used if either the algorithm
on GVBA performs several times fewer symbolic operations than its equivalent on GEBA

or if no algorithm on GEBA exists in the first place.

6.3. MEC Decomposition Algorithms 45

102 103 104 105 106

102

103

104

105

106

GVBA Size

G
E
B
A

Si
ze

Full GEBA

Abstracted GEBA

Figure 6.3: Comparison of the transition BDDs used in the “native” GEBA and after
the conversion to GVBA by BDD node count.

6.3 MEC Decomposition Algorithms

The runtime results for each algorithm for both Cudd and Sylvan can be seen in the
quantile plots of Fig. 6.4. While the conversion algorithm has been used to obtainGVBA

from GEBA, the runtime as well as the amount of symbolic operations of the conversion
process itself are excluded from all figures of this section. We observe the general trend
that Sylvan with four threads seems to be one of the fastest configurations for this
set of benchmarks; the benefits of adding four additional threads seem to be negligible.
In comparison, Cudd outperforms multi-threaded Sylvan mostly on the fastest MEC
decomposition benchmarks. Notably, the gap in performance between Sylvan and
Cudd seems to be especially large when using LockStep.

To compare the runtimes of the algorithms against each other, we focus on the configu-
ration using Sylvan with four CPU threads. The quantile plot of Fig. 6.5 compares the
overall runtime performance of the MEC decomposition algorithms for both graph-like
structures.

Overall, LockStep seems to have the worst performance for either graph-like struc-
ture. When comparing LockStep to Naive in Fig. 6.6, we can see that LockStep is
only slightly more performant in very few benchmarks, while Naive seems to be more
performant in most other instances, regardless of the graph-like structure used or the
overall runtime duration. Similiar results can be seen when measuring the amount of
symbolic operations. This indicates that the worst-case scenarios in which LockStep
theoretically improves upon Naive do not occur often enough in practice in order to
yield a performance improvement.

46 Chapter 6. Evaluation

0 20 40 60 80 100 120 140 160 180

0.1

1

10

100

1,000

N
a
iv

e
M
ax

.
R
un

ti
m
e
(S
ec
on

ds
)

GEBA CUDD 1T GEBA Sylvan 1T GEBA Sylvan 4T GEBA Sylvan 8T

GVBA CUDD 1T GVBA Sylvan 1T GVBA Sylvan 4T GVBA Sylvan 8T

0 20 40 60 80 100 120 140 160 180

0.1

1

10

100

1,000

L
o
c
k
S
t
ep

M
ax

.
R
un

ti
m
e
(S
ec
on

ds
)

0 20 40 60 80 100 120 140 160 180

0.1

1

10

100

1,000

Benchmarks

C
o
ll

a
ps

in
g

M
ax

.
R
un

ti
m
e
(S
ec
on

ds
)

Figure 6.4: Quantile plots showing the benchmarked runtimes of all three symbolic
MEC decomposition algorithms for bothGEBA andGVBA (when possible) using various
BDD library configurations.

6.3. MEC Decomposition Algorithms 47

0 20 40 60 80 100 120 140 160 180

0.1

1

10

100

1,000

Benchmarks

M
ax

.
R
un

ti
m
e
(S
ec
on

ds
)

GEBA Naive

GEBA LockStep

GVBA Naive

GVBA Lockstep

GVBA Collapsing

Figure 6.5: Quantile plot showing the runtimes of the symbolic MEC decomposition
algorithms for both GEBA and GVBA.

In contrast, the results of Collapsing seem more mixed: the runtime scatter plot
in Fig. 6.7 shows that Naive is more performant on quick MEC decompositions,
while Collapsing becomes more competitive with longer runtime. Most interest-
ingly, Naive still uses less symbolic Pre/Post operations than Collapsing in all
benchmarks.

In Fig. 6.8, we compare the runtimes and the amount of symbolic operations of Col-
lapsing using various γ. Collapsing requires an SCC to have a diameter (Def. 2.5)
of at least γ in order to be able to compute a q-separator [CDHS21]. Therefore for
γ = n = |V |, no q-separator will be (successfully) computed. When looking at the
amount of symbolic operations, over 80% of the benchmarks of Collapsing with
γ = (2

√
n + 2) log(n) perform an exactly equal amount of symbolic operations as

Collapsing with γ = n. This indicates that in most instances, Collapsing fails
to compute any q-separator and therefore follows the same strategy as Naive while
performing strictly more work (see Remark 5.2). This raises the question of where the
performance improvements of Collapsing over Naive are coming from.

48 Chapter 6. Evaluation

≤
0.1

1 10

100

1000

≤0.1

1

10

100

1000

3600
T

O
M

E

3600
TO
ME

Naive Runtime (Seconds)

L
o
ck

S
te

p
R

un
ti

m
e

(S
ec

on
ds

) GEBA

GVBA

103 104 105 106 107

103

104

105

106

107

Naive Symbolic Ops.

L
o
ck

S
te

p
Sy

m
bo

lic
O

ps
.

GEBA

GVBA

Figure 6.6: Comparison of LockStep to Naive for both GEBA and GVBA by runtime
(in seconds, left) and symbolic operations (Pre + Post , right).

≤
0.1

1 10

100

1000

≤0.1

1

10

100

1000

3600
T

O
M

E

3600
TO
ME

GVBA Naive
Runtime (Seconds)

G
V
B
A

C
o
ll

a
ps

in
g

R
un

ti
m

e
(S

ec
on

ds
)

103 104 105 106 107

103

104

105

106

107

GVBA Naive
Symbolic Ops.

G
V
B
A

C
o
ll

a
ps

in
g

Sy
m

bo
lic

O
ps

.

Figure 6.7: Comparison of Collapsing and Naive on GVBA. Runtimes (in seconds)
are compared in the left plot, the amount of symbolic Pre + Post operations are
compared on the right.

6.3. MEC Decomposition Algorithms 49

≤
0.1

1 10

100

1000

≤0.1

1

10

100

1000

3600
T

O
M

E

3600
TO
ME

Collapsing without q-separators
(γ = n)

C
o
ll

a
ps

in
g

w
it

h
γ
<
n

γ = ((2
√
n+2) log(n))+n

2

γ = (2
√
n+ 2) log(n)

103 104 105 106 107

103

104

105

106

107

Collapsing without q-separators
(γ = n)

C
o
ll

a
ps

in
g

w
it

h
γ
<
n

γ = ((2
√
n+2) log(n))+n

2

γ = (2
√
n+ 2) log(n)

Figure 6.8: Comparison of Collapsing runtime (left) and amount of symbolic Pre +
Post operations (right) using various γ parameters.

A direct comparison of the amount of symbolic operations of Collapsing and either
Naive or LockStep on GVBA is partially inaccurate: both Naive and LockStep
do not modify the transition BDD of GVBA in contrast to Collapsing. Each time a
detected EC is collapsed into a single vertex, the transition BDD is modified, which
can lead to a non-uniform runtime cost per Pre/Post operation. The transition BDD
size changes during the decomposition are visualized in Fig. 6.9, but it is unclear to
which extent this effect can be seen on a “native” GVBA implementation (Remark 5.1).

102 103 104 105 106

102

103

104

105

106

Initial GVBA Size

M
in

.
/

M
ax

.
G

V
B
A

Si
ze

Max. BDD Size

Min. BDD Size

Figure 6.9: Maximum and minimum size (in node count) of the transition BDD in the
first phase of Collapsing.

50 Chapter 6. Evaluation

For GEBA, both Naive and LockStep modify the transition BDD whenever an action
is removed (Remark 2.9). If the varying transition BDD size of Collapsing is the
reason for its lower runtime, we would like to try to replicate this effect on GEBA as
best as possible. As such, two additional variants of Naive have been benchmarked
on GEBA: NaiveRemoveNonTrivial removes all actions of each identified MEC
from the transition BDD, while NaiveRemoveAll also removes the actions of trivial
SCCs.

≤
0.1

1 10

100

1000
≤0.1

1

10

100

1000

3600
T

O
M

E

3600
TO
ME

GEBA NaiveRemoveNonTrivial

G
E
B
A

N
a
iv

e

≤
0.1

1 10

100

1000

≤0.1

1

10

100

1000

3600
T

O
M

E

3600
TO
ME

GEBA NaiveRemoveAll

G
E
B
A

N
a
iv

e

Figure 6.10: Runtime (in seconds) comparisons of Naive to the variants NaiveRe-
moveNonTrivial and NaiveRemoveAll.

The results of these benchmarks can be seen in Fig. 6.10 and are mixed overall:
NaiveRemoveAll is only faster in rare instances. NaiveRemoveNonTrivial
shows slightly better results, but overall, Naive remains faster most of the time.

To summarize and answer research question 2, our empirical evidence implies that the
worst-case instances in which LockStep and Collapsing improve upon Naive do
not occur often enough in order to yield a lower amount of symbolic operations. When
focusing on the real-world runtime performance, Collapsing seems competitive with
Naive when ran on a converted GVBA structure, but whether Collapsing remains
competitive in a “native” GVBA implementation (Remark 5.1) requires further research.

6.4. GEBA vs GVBA 51

6.4 GEBA vs GVBA

Given that the used conversion process from GEBA to GVBA is suboptimal (Re-
mark 5.1), it is misleading to simply compare the benchmarked runtimes directly.
However for any given model, the amount of symbolic operations is not influenced by
the conversion process, which we can use to argue which graph-like structure is prefer-
able for computing MEC decompositions. Assuming that each action is encoded as
a distinct vertex in GVBA, any given MDP will require at least twice the amount of
vertices in comparison to GEBA. This will result in at least two more Boolean vari-
ables being used within the transition BDD of GVBA in comparison to the abstracted
transition BDD of GEBA.

102 103 104 105 106

102

103

104

105

106

Initial Full GEBA Size

M
in

.
/

M
ax

.
Fu

ll
G

E
B
A

Si
ze

Max. BDD Size

Min. BDD Size

102 103 104 105 106

102

103

104

105

106

Initial Abstracted GEBA Size

M
in

.
/

M
ax

.
A

bs
tr

ac
ed

G
E
B
A

Si
ze Max. BDD Size

Min. BDD Size

Figure 6.11: Maximum and minimum size (in node count) of the full and abstracted
transition BDD of Naive on GEBA.

Therefore it is likely that a single Pre/Post operation on GEBA is comparable to an
operation performed on GVBA, if not faster. Additionally, the cost is non-uniform for
Naive and LockStep on GEBA in contrast to GVBA due to the removal of actions
from the transition BDD (Remark 2.9). The extent of the varying BDD size on GEBA

when using Naive can be seen in Fig. 6.11. For this set of benchmarks, the varying
cost seems to work out in favour of GEBA by often reducing transition BDD size which
should lead to faster Pre/Post operations.

Given these assumptions, we can argue that GEBA generally has a better runtime per-
formance for MEC decompositions than GVBA, even if GVBA is constructed “natively”:
in Fig. 6.12, GEBA uses less symbolic Pre/Post operations than any of the algorithms
used on GVBA. In Fig. 6.13, we can see that Naive uses roughly twice the amount of
symbolic operations on GVBA in comparison to GEBA, while this effect only worsens
when using LockStep.

52 Chapter 6. Evaluation

0 20 40 60 80 100 120 140 160 180

102

103

104

105

106

107

108

Benchmarks

M
ax

.
sy
m
bo

lic
(P

re
+
P
o
st
)
op

s
GEBA Naive

GEBA LockStep

GVBA Naive

GVBA LockStep

GVBA Collapsing

Figure 6.12: Quantile plot showing the amount of symbolic Pre + Post operations of
the symbolic MEC decomposition algorithms for both GEBA and GVBA.

To truly capture the difference in runtime performance, further benchmarks with a
“native” GVBA are required, as these comparisons also disregard additional symbolic
operations unique to GEBA, such as the calculation of the abstracted BDD from the full
transition BDD. The general hierarchy of required symbolic operations is still present
even if all symbolic operations are measured (see Fig. 6.14), which indicates that the
comparisons of symbolic Pre/Post operations should be representative and indicate a
better runtime performance on GEBA.

To answer research question 3, a symbolic MEC decomposition computation requires
fewer symbolic operations on GEBA than on GVBA. As the cost of each symbolic
operation on GEBA is roughly equal to (if not lower than) a symbolic operation on
GVBA, the computation of an MEC decomposition is more efficient on GEBA than
GVBA.

6.4. GEBA vs GVBA 53

103 104 105 106 107

103

104

105

106

107

GEBA Naive

G
V
B
A

N
a
iv

e

103 104 105 106 107

103

104

105

106

107

GEBA LockStep
G

V
B
A

L
o
ck

S
te

p

Figure 6.13: Comparison of GEBA to GVBA by the amount of symbolic operations
(Pre + Post) used for both Naive (left) and LockStep (right).

0 20 40 60 80 100 120 140 160 180

102

103

104

105

106

107

108

Benchmarks

M
ax

.
Sy

m
bo

lic
O
ps
.

GEBA Naive

GEBA LockStep

GVBA Naive

GVBA LockStep

GVBA Collapsing

Figure 6.14: Quantile plot showing the amount of all symbolic operations of the sym-
bolic MEC decomposition algorithms for both GEBA and GVBA.

54 Chapter 6. Evaluation

Chapter 7

Conclusion and Outlook

The primary goal of this thesis was to evaluate how three different symbolic MEC
decomposition algorithms perform and compare to each other in practice. To achieve
this, we have started from the abstract definitions of MDPs and formalized two dif-
fering graph-like structures GEBA and GVBA. In the literature, the definitions and
representations of MDPs tend to differ depending on the context in which they are
used. As we have seen in Chapter 5, these different representations not only require
slightly different implementations of various algorithms, but can also lead to some al-
gorithms becoming impractical if not infeasible to use. To understand the limitations
of symbolic algorithms and operations, we discussed (RO)BDDs and how they work
by explaining an implementation of the And operation as an example. We covered
both the explicit and the symbolic implementation of MDPs of GEBA found in Storm,
compared them to another to make them easier to grasp and discussed the differences
to a GVBA implementation. We used these differences to present a novel symbolic
algorithm to convert from GEBA to GVBA and showed how results on the converted
GVBA can be translated back into the GEBA representation.

To experimentally evaluate the symbolic MEC decomposition algorithms for both
graph-like structures, the conversion algorithm was extensively used. While the process
itself runs quickly, the resulting BDDs contain more nodes and the runtime cost of each
symbolic operation increases substantially. In theory for the decomposition algorithms,
both LockStep and Collapsing improve upon Naive by reducing the amount of
required symbolic Pre/Post operations in a worst-case scenario. Our empirical evalua-
tion showed that naive remains faster when compared to LockStep, but the runtime
results become more mixed when comparing Naive to Collapsing. Most notably,
Naive almost always uses the least amount of symbolic Pre/Post operations, which
indicates that any of the advantages in runtime performance of Collapsing might be
dependant on the non-uniform cost of the symbolic Pre/Post operations due to the
modifications of the transition BDD.

55

56 Chapter 7. Conclusion and Outlook

Whether this effect can be seen on a “native” implementation of GVBA might be of
interest for future work. While the amount of symbolic operations indicate that GEBA

is the more performant option for symbolically computing MECs, the true runtime
difference to a “native” GVBA implementation has yet to be measured, as the subop-
timal size of the of the converted transition BDD also hinders a direct comparison of
the runtime performance between graph-like structures. Additionally, the recent works
of [LSS+23] provide a faster symbolic SCC decomposition algorithm. It is unclear
whether all MEC decomposition algorithms benefit equally from a faster SCC compu-
tation. As the results of this thesis reiterates the difference between theoretical and
practical impact, a similar performance comparison using the various explicit MEC
decomposition algorithms [CH14, CH11, CH14, CDHS19] could also be of interest for
future work.

Bibliography

[Ake78] Sheldon B. Akers. Binary decision diagrams. IEEE Transactions on com-
puters, 27(06):509–516, 1978. (Cited on pages 1 and 13.)

[BCC+14] Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtěch Forejt,
Jan Křetínskỳ, Marta Kwiatkowska, David Parker, and Mateusz Ujma.
Verification of Markov decision processes using learning algorithms. In
Automated Technology for Verification and Analysis: 12th International
Symposium, ATVA 2014, Sydney, NSW, Australia, November 3-7, 2014,
Proceedings 12, pages 98–114. Springer, 2014. (Cited on page 8.)

[BDH+17] Carlos E. Budde, Christian Dehnert, Ernst Moritz Hahn, Arnd Hartmanns,
Sebastian Junges, and Andrea Turrini. JANI: Quantitative Model and Tool
Interaction. In Axel Legay and Tiziana Margaria, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems - 23rd International
Conference, TACAS 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April
22-29, 2017, Proceedings, Part II, volume 10206 of Lecture Notes in Com-
puter Science, pages 151–168, 2017. (Cited on page 2.)

[BFG+97] R Iris Bahar, Erica A Frohm, Charles M Gaona, Gary D Hachtel, Enrico
Macii, Abelardo Pardo, and Fabio Somenzi. Algebric decision diagrams and
their applications. Formal methods in system design, 10(2):171–206, 1997.
(Cited on page 15.)

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
press, 2008. (Cited on pages 1, 7, 8, and 22.)

[BRB91] Karl S Brace, Richard L Rudell, and Randal E Bryant. Efficient implemen-
tation of a BDD package. In Proceedings of the 27th ACM/IEEE design
automation conference, pages 40–45, 1991. (Cited on page 15.)

[Bry86] Randal E Bryant. Graph-based algorithms for boolean function manipula-
tion. Computers, IEEE Transactions on, 100(8):677–691, 1986. (Cited on
pages 1, 14, and 18.)

57

58 Bibliography

[Bry92] Randal E Bryant. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys (CSUR), 24(3):293–318, 1992.
(Cited on pages 1 and 15.)

[BVD17] Richard J Boucherie and Nico M Van Dijk. Markov decision processes in
practice, volume 248. Springer, 2017. (Cited on pages 1 and 7.)

[BW96] Beate Bollig and Ingo Wegener. Improving the variable ordering of OBDDs
is NP-complete. IEEE Transactions on computers, 45(9):993–1002, 1996.
(Cited on pages 2 and 22.)

[CDHL16] Krishnendu Chatterjee, Wolfgang Dvořák, Monika Henzinger, and Veronika
Loitzenbauer. Model and objective separation with conditional lower
bounds: Disjunction is harder than conjunction. In Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science, pages 197–
206, 2016. (Cited on pages 1, 8, and 10.)

[CDHL18] Krishnendu Chatterjee, Wolfgang Dvořák, Monika Henzinger, and Veronika
Loitzenbauer. Lower bounds for symbolic computation on graphs: Strongly
connected components, liveness, safety, and diameter. In Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2341–2356. SIAM, 2018. (Cited on page 27.)

[CDHS19] Krishnendu Chatterjee, Wolfgang Dvorák, Monika Henzinger, and Alexan-
der Svozil. Near-linear time algorithms for streett objectives in graphs and
MDPS. arXiv preprint arXiv:1909.05539, 2019. (Cited on pages 1, 3, 8,
and 56.)

[CDHS21] Krishnendu Chatterjee, Wolfgang Dvořák, Monika Henzinger, and Alexan-
der Svozil. Symbolic time and space tradeoffs for probabilistic verification.
In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence (LICS), pages 1–13. IEEE, 2021. (Cited on pages 2, 4, 8, 27, 29, 32,
35, 37, 41, 42, and 47.)

[CH11] Krishnendu Chatterjee and Monika Henzinger. Faster and dynamic algo-
rithms for maximal end-component decomposition and related graph prob-
lems in probabilistic verification. In Proceedings of the twenty-second annual
ACM-SIAM symposium on Discrete Algorithms, pages 1318–1336. SIAM,
2011. (Cited on pages 3, 8, 29, 32, and 56.)

[CH14] Krishnendu Chatterjee and Monika Henzinger. Efficient and dynamic algo-
rithms for alternating Büchi games and maximal end-component decompo-
sition. Journal of the ACM (JACM), 61(3):1–40, 2014. (Cited on pages 1,
3, and 56.)

[CHI+16] Shiri Chechik, Thomas Dueholm Hansen, Giuseppe F Italiano, Jakub Łącki,
and Nikos Parotsidis. Decremental single-source reachability and strongly
connected components in Õ(m

√
n) total update time. In 2016 IEEE 57th

Bibliography 59

Annual Symposium on Foundations of Computer Science (FOCS), pages
315–324. IEEE, 2016. (Cited on page 37.)

[CHL+18] Krishnendu Chatterjee, Monika Henzinger, Veronika Loitzenbauer, Simin
Oraee, and Viktor Toman. Symbolic algorithms for graphs and Markov
decision processes with fairness objectives. In International Conference on
Computer Aided Verification, pages 178–197. Springer, 2018. (Cited on
pages 2, 4, 8, 29, 32, 33, 35, 41, and 42.)

[DA98] Luca De Alfaro. Formal verification of probabilistic systems. stanford uni-
versity, 1998. (Cited on pages 2, 3, 4, and 29.)

[DB13] Rolf Drechsler and Bernd Becker. Binary decision diagrams: theory and im-
plementation. Springer Science & Business Media, 2013. (Cited on pages 2
and 13.)

[EFT93] Reinhard Enders, Thomas Filkorn, and Dirk Taubner. Generating BDDs
for symbolic model checking in CCS. Distributed Computing, 6(3):155–164,
1993. (Cited on pages 2 and 22.)

[Fab23] Felix Faber. Comparison of Maximal End Component Decomposition Al-
gorithms: Data and Code, September 2023. (Cited on page 42.)

[FMY97] Masahiro Fujita, Patrick C. McGeer, and JC-Y Yang. Multi-terminal binary
decision diagrams: An efficient data structure for matrix representation.
Formal methods in system design, 10(2):149–169, 1997. (Cited on page 15.)

[GPP03] Raffaella Gentilini, Carla Piazza, and Alberto Policriti. Computing strongly
connected components in a linear number of symbolic steps. In SODA,
volume 3, pages 573–582, 2003. (Cited on pages 27, 29, and 41.)

[HJK+21] Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Tim Quatmann,
and Matthias Volk. The probabilistic model checker Storm. International
Journal on Software Tools for Technology Transfer, pages 1–22, 2021. (Cited
on pages 2, 19, and 41.)

[HKP+19] Arnd Hartmanns, Michaela Klauck, David Parker, Tim Quatmann, and
Enno Ruijters. The quantitative verification benchmark set. In Interna-
tional Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems, pages 344–350. Springer, 2019. (Cited on pages 2 and 42.)

[HM18] Serge Haddad and Benjamin Monmege. Interval iteration algorithm for
MDPs and IMDPs. Theoretical Computer Science, 735:111–131, 2018.
(Cited on page 8.)

[JM09] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Com-
puting Surveys (CSUR), 41(4):1–54, 2009. (Cited on page 20.)

60 Bibliography

[KNP02] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: Proba-
bilistic symbolic model checker. In International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation, pages 200–
204. Springer, 2002. (Cited on page 2.)

[Lee59] Chang-Yeong Lee. Representation of switching circuits by binary-decision
programs. The Bell System Technical Journal, 38(4):985–999, 1959. (Cited
on pages 1 and 13.)

[LSS+23] Casper Abild Larsen, Simon Meldahl Schmidt, Jesper Steensgaard,
Anna Blume Jakobsen, Jaco van de Pol, and Andreas Pavlogiannis. A
Truly Symbolic Linear-Time Algorithm for SCC Decomposition. In In-
ternational Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 353–371. Springer, 2023. (Cited on pages 2, 4,
27, 29, and 56.)

[MSS07] Shin-ichi Minato, Ken Satoh, and Taisuke Sato. Compiling Bayesian
Networks by Symbolic Probability Calculation Based on Zero-Suppressed
BDDs. In IJCAI, volume 2007, pages 2550–2555, 2007. (Cited on page 15.)

[Put94] Martin L Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming, 1994. (Cited on pages 1 and 8.)

[SLL09] Alexander L Strehl, Lihong Li, and Michael L Littman. Reinforcement
Learning in Finite MDPs: PAC Analysis. Journal of Machine Learning
Research, 10(11), 2009. (Cited on page 8.)

[Som97] Fabio Somenzi. CUDD: CU decision diagram package. Public Software,
University of Colorado, 1997. (Cited on page 42.)

[Tar72] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM
journal on computing, 1(2):146–160, 1972. (Cited on pages 3 and 26.)

[vD16] Tom van Dijk. Sylvan: multi-core decision diagrams. 2016. (Cited on
pages 18 and 42.)

[Whi85] Douglas J White. Real applications of Markov decision processes. Inter-
faces, 15(6):73–83, 1985. (Cited on pages 1 and 7.)

[Whi88] Douglas J White. Further real applications of Markov decision processes.
Interfaces, 18(5):55–61, 1988. (Cited on pages 1 and 7.)

[Whi93] Douglas J White. A survey of applications of Markov decision processes.
Journal of the operational research society, 44(11):1073–1096, 1993. (Cited
on pages 1 and 7.)

[WKB14] Anton Wijs, Joost-Pieter Katoen, and Dragan Bošnački. GPU-based graph
decomposition into strongly connected and maximal end components. In
Computer Aided Verification: 26th International Conference, CAV 2014,

Bibliography 61

Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
July 18-22, 2014. Proceedings 26, pages 310–326. Springer, 2014. (Cited on
page 3.)

[XB00] Aiguo Xie and Peter A Beerel. Implicit enumeration of strongly connected
components and an application to formal verification. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 19(10):1225–
1230, 2000. (Cited on page 2.)

[YO97] Bwolen Yang and David R O’hallaron. Parallel breadth-first BDD con-
struction. In Proceedings of the sixth ACM SIGPLAN symposium on Prin-
ciples and practice of parallel programming, pages 145–156, 1997. (Cited on
page 18.)

	Introduction
	Contributions of the Thesis
	Related Work
	Structure of the Thesis

	Preliminaries
	Strongly Connected Components
	Separators
	Markov Decision Process
	Policies and Properties
	Graph-Like Structures of MDPs
	Maximal End Components
	Random Attractors

	Binary Decision Diagrams
	Notation
	Naive BDDs and Reduced Ordered BDDs
	And Operation on ROBDDs
	List of BDD operations

	MDP Representation
	Sparse Representation
	Symbolic Representation

	Symbolic Algorithms
	GEBA Conversion
	SCC Decomposition
	Random Attractor
	Random Out
	MEC Decomposition
	Algorithm Naive
	Algorithm LockStep
	Algorithm Collapsing

	Evaluation
	Setup
	MDP Conversion
	MEC Decomposition Algorithms
	GEBA vs GVBA

	Conclusion and Outlook
	Bibliography

